Proportions

A PROPORTION is an equation that relates two equivalent ratios. Ratios are said to be in proportion if they can both be reduced to the same ratio.

$$\frac{1}{2} = \frac{5}{10} \qquad \qquad \frac{1}{2} = \frac{5}{8}$$

$$\frac{1}{2} = \frac{5}{8}$$

This is a proportion.

This is **NOT** a proportion

You can check to see if two ratios are in proportion by crossmultiplying. The cross-products must be equal.

Example:

State whether the ratios are proportional. If they aren't proportional, change one of the numbers to make them proportional. Circle = $or \neq .$

1)
$$\frac{6}{10} = \neq \frac{3}{5}$$

1)
$$\frac{6}{10} = \neq \frac{3}{5}$$
 $\frac{6}{10} \neq \frac{3}{5}$ They are in proportion.

You Try:

1)
$$\frac{4}{5} = \neq \frac{12}{15}$$
 2) $\frac{8}{12} = \neq \frac{2}{3}$ 3) $\frac{7}{8} = \neq \frac{8}{9}$

2)
$$\frac{8}{12} = \neq \frac{2}{3}$$

3)
$$\frac{7}{8} = \neq \frac{8}{9}$$

4)
$$\frac{4}{5} = \neq \frac{7}{8}$$

4)
$$\frac{4}{5} = \neq \frac{7}{8}$$
 5) $\frac{4}{12} = \neq \frac{5}{15}$ 6) $\frac{1}{3} = \neq \frac{1}{6}$

6)
$$\frac{1}{3} = \neq \frac{1}{6}$$

Solving Proportions

One way to solve proportions is to cross multiply and see what factor you need to make the cross-products equal.

Example:

Another way that you can solve a proportion is to find the factor that is shared across the numerator or denominator and use that same relationship to complete the proportion.

Example:

1)
$$\frac{4}{36} = \frac{u}{9}$$

$$\frac{4}{36} = \frac{3}{6}$$

$$\div 4$$

$$u = 1$$

2)
$$\frac{u}{36} = \frac{1}{36}$$

$$u = 4$$

You Try:

Finding the missing number in the proportion:

1)
$$\frac{r}{15} = \frac{4}{20}$$

1)
$$\frac{r}{15} = \frac{4}{20}$$
 2) $\frac{8}{10} = \frac{20}{y}$ 3) $\frac{x}{30} = \frac{3}{4}$

3)
$$\frac{x}{30} = \frac{3}{4}$$

4)
$$\frac{2.5}{5} = \frac{j}{4}$$
 5) $\frac{12}{a} = \frac{21}{7}$

5)
$$\frac{12}{g} = \frac{2}{7}$$

6)
$$\frac{k}{3} = \frac{14}{21}$$