You Try:

Substitute to evaluate the following algebraic expressions when $x=2, y=25$ and $z=8$. Show all of your work!

1) $3 z$	2) $y-z+x$	3) y^{x}
4) $z \div x$	5) $x+y+z$	6) $9-x$
7) $100-10 x-10 z$	8) $14 \div x+2 y$	9) w^{0}
10$) x y z$	$11) z(x+y)$	12) $x+x \cdot y$

Eualuating Expressions Extra Practice

Use substitution to evaluate each expression for the given value of the variable. Show your work!

1) $9 y-3(f \circ r y=11)$	2) 7 m (for $\mathrm{m}=5$)	3) $d^{2}-2 d$ (for $\left.\mathrm{d}=9\right)$
4) $6 q+39$ (for $q=10)$	5) $6 v$ (for $v=3)$	6) $j^{3}+11$ (for $\left.j=8\right)$
$\text { 7) } \begin{aligned} & 2 k^{2}+5 k+2 \\ & \text { (for } k=11 \text {) } \end{aligned}$	8) $\frac{n}{3}+n($ for $\mathrm{n}=27)$	9) $a \div 3$ (for $\mathrm{a}=42)$
	11) $h^{3}-2($ for $\mathrm{h}=7)$	$\text { 12) } \begin{aligned} & 14 z-1 \\ & (\text { for } z=9) \end{aligned}$

Evaluating Expressions Extra Practice

Use substitution to evaluate each expression for the given value of the variable. Show your work!

$\text { 13) } \begin{aligned} & 15 e+37 \\ & (\text { for } e=5) \end{aligned}$	14) $19 r \quad($ for $r=8)$	$\begin{aligned} & \text { 15) } \\ & x^{2}+2 x+4+x \\ & \text { (for } x=10 \text {) } \end{aligned}$
16) $7(4+h)$ (for $h=21)$		18) $b-15$ (for $\mathrm{b}=15$)
	$\text { 20) } \begin{gathered} 3 b^{2}+5 b \\ (\text { for } b=2) \end{gathered}$	21) $8 e+22$ (for $\mathrm{e}=42$)
$\text { 22) } \begin{aligned} & 2 x^{2}-11 x+6 \\ & \text { (for } \mathrm{x}=12 \text {) } \end{aligned}$	$\text { 23) } \begin{aligned} & p^{3}-4 p \\ & (\text { for } p=4) \end{aligned}$	$\begin{aligned} & \text { 24) } \begin{array}{l} 16(3+a)-a \\ \text { (for } a=13) \end{array}, ~ \end{aligned}$

Using and Eualuating Formulas

A formula is a mathematical rule written using variables, usually an expression or equation describing a relationship between quantities.

To evaluate or solve a formula, you substitute the number for the variable.

Common Formulas

Area of a rectangle $=1 \cdot \mathrm{w} \quad$ Surface Area of a Cube $=6 s^{2}$
Area of a triangle $=\frac{1}{2} b h$
Volume of a Cube $=s^{3}$
Area of a Trapezoid $=h\left(\frac{b_{1+b_{2}}}{2}\right)$
Example 1: Mary Lou is setting up a lemonade stand. Her rectangular sign is 3 feet long and 2.5 feet wide. If the formula for area of a rectangle is $A=1 \cdot \mathrm{w}$, what is the area of her sign?

$$
\begin{aligned}
& A=1 \cdot \mathrm{w} \\
& A=3 \mathrm{ft} \cdot 2.5 \mathrm{ft} \\
& \mathrm{~A}=7.5 \mathrm{ft}^{2}
\end{aligned}
$$

\rightarrow Step 1: Write the formula.
\rightarrow Step 2: Substitute for the variable(s).

Example 2: Billy Bob needs to figure out the volume of a cube.
It is 12 in tall. Help him find the volume, if the formula is $V=s^{3}$.

$$
\begin{array}{ll}
V=s^{3} & \rightarrow \text { Step 1: Write the formula. } \\
V=12 \text { in } \cdot 12 \text { in } \cdot 12 \text { in } & \rightarrow \text { Step 2: Substitute for the variable(s). } \\
V=144 \cdot 12 & \rightarrow \text { Step 3: Solve (in this case, multiply). } \\
V=1728 \mathrm{in}^{3} &
\end{array}
$$

You Try:

1) What is the surface area of a cube that is 4 in . tall?
2) What is the area of a rectangle with a height of 8.5 cm and a width of 3 cm ?
3) What is the area of a triangle with a height of 5 m and a base length of 9 m ?
4) What is the area of a trapezoid that is 4 cm high, with bases that are 10 cm and 12 cm long?
5) Why are formulas useful/helpful?
