More Practice with Ratios

Use the table to answer the following questions.

Favorite Snacks of the $\mathbf{6}^{\text {th }}$ Graders	
Ice Cream	12
Takis	6
Candy	9
Fruit	4
Sunflower Seeds	2
Seaweed	5
Cookies	7

Find the following ratios. Don't forget to simplify if necessary.

1) candy to seaweed \qquad to \qquad
2) sunflower seeds to cookies \qquad to \qquad
3) Takis to ice cream \qquad to \qquad
4) candy to cookies and fruit \qquad to \qquad
5) cookies to Takis \qquad to \qquad
6) fruit to candy \qquad to \qquad
7) Takis and fruit to seaweed \qquad to \qquad
8) ice cream to sunflower seeds \qquad to \qquad
9) candy to total \qquad to \qquad
10) cookies and ice cream to total \qquad to \qquad

Ratio Tables

A \qquad is a table of values that displays
equivalent ratios.

Example:

Soda	1	2	3
Juice	3	6	9

The ratios $\frac{1}{3}, \frac{2}{6}$, and $\frac{3}{9}$ are equivalent, since each simplifies to a ratio of $\frac{1}{3}$.

Equivalent ratios express the same relationship between quantities. In the example above, for every 1 soda, there are 3 juices.

Examples:

1) To make yellow icing, you mix 6 drops of yellow food coloring with 1 cup of white icing. How much yellow food coloring should you mix with 5 cups of white icing to get the same shade?
Use a ratio table. Since $1 \times 5=5$, multiply each quantity by 5 .
So, add 30 drops of yellow food coloring to 5 cups of icing.

2) In a recent year, Joey Chestnut won a hot dog eating contest by eating nearly 66 hot dogs in 12 minutes. If he ate at a constant rate, determine about how many hot dogs he ate every two minutes.
Divide each quantity by one or more common factors until you reach a quantity of 2 minutes.

So, Chestnut ate about 11 hot dogs every 2 minutes.

