IXL TRACKING LOG

Two-Step Equations and Inequalities

Simplify Expressions with Rational Numbers
Factor Expressions
Write and Solve Multi-Step Equations
Write, Solve, and Graph Multi-Step Inequalities

Name: \qquad -

IXL Skill	$\begin{aligned} & \text { Your Score } \\ & \begin{array}{c} \text { (} 90 \text { or } \\ \text { gbove) } \end{array} \end{aligned}$
2.11 (Solve equations involving integers)	
7 ${ }^{\text {th }}$ Grade IXL Standards:	
R. 11 (Multiply using the distributive property)	
R. 14 (Add and subtract linear expressions)	
R. 15 (Add and subtract like terms with exponents)	
R. 17 (Identify equivalent linear expressions I)	
S. 6 (Solve two-step equations)	
S. 8 (Solve equations involving like terms)	
S.9 (Solve equations: complete the solution)	
T. 4 (Solve one-step inequalities)	
T. 5 (Graph solutions to one-step inequalities)	
T. 6 (Solve two-step inequalities)	
T.7 (Graph solutions to two-step inequalities)	

Math Teacher:

\qquad

Vocabulary Term	What does it mean? Definition	What does it look like? Picture/Example
Variable	A symbol, usually a letter, that represents a number	
Coefficient	A number that multiplies a variable	
Exponent	Tells how many times to multiply the base number by itself	
Eike terms	Terms that have the same variable and/or exponent	
Eimplify (an expression)	A group of variable(s), operation(s), and/or number(s) that represents a quantity. Expressions do not contain = signs. form by removing parentheses and unnecessary terms. This is typically done by using distributive property and combining like terms	
Commutative Property	This states that numbers may be added or multiplied together in any order, and the solution will always be the same	
Associative	This states that no matter how numbers are grouped, their sum or product will always be the same	
Distributive property	Multiplying a number is the same as multiplying its addends by the number, then adding the products	

Vocabulary Term	What does it mean? Definition	What does it look like? Picture/Example
Equation	A mathematical sentence containing an equal sign, showing that two expressions are equivalent	
Inverse operations	Opposite operations that "undo" each other	
Inequality	A statement showing that two expressions are NOT equal, using one of the following signs: $>,<, \geq$, \leq, or \neq	
Less than	$<$	
Less than or		
equal to	\leq	
Greater than	$>$	
Greater than or equal to	\geq	
Not equal to	Two quantities are NOT equal, \neq	
Solution set	A set of answers to an inequality	

Unit 9 Pre-requisite Skills Review

Simplifying Expressions:

1) Circle All.pf the following expressions that are equivalent to $24 y+88$. SHOW ALL WORK BELOW

a. $4(6 y+22)$	b. $8(3 y+88)$	c. $4(6 y+88)$	d. $24(y+88)$
e. $2(44+12 y)$	f. $6 y+18+88$	g. 112 y	T-Rex hates puathupe

2) Simplify $6 x^{2}+15 x^{2}+4 y^{2}-6 x^{2}$
3) Simplify $7 x y^{3}+13 x^{5} y-x^{5} y+23 x^{5} y$
4) Simplify $15\left(x^{2}+4 x\right)+3\left(2 x^{2}+5 x\right)$
5) Simplify $13\left(2 x y^{2}+3 y\right)+\left(2 x y^{2}+5 x y^{2}\right)$

Rational Numbers Review
6) Fill in the table with at least 3 examples and non-examples of each:

	Examples	Non-examples
Whole Numbers		
Integers		
Rational Numbers		

7) $8+(-19)+14$
8) $-41-(-8)$
9) $-6 \cdot-4 \cdot-2$
10) $-18 \div-4$

Two-Step Equations:

Using any method (substitution or inverse operations), determine the value of each variable:
24) $-4 x+5=17$
a. -3
b. 3
c. -5
d. 12
25) $3 \mathrm{~b}-8=-2$
a. 24
a. 4
b. -2
b. -4
c. 2
c. 10
d. -3.3
d. 20
11) $-19+11+8$
12) $52-98$
13) $2.5 \cdot(-4)$
14) $\frac{-33}{11}$

Writing the Expressions and/or Equations:

15) -3 more than twice a number \qquad
16) 6 less than four times a number is 19 \qquad
17) the sum of 16 and half of x equals 4 \qquad

Solving Equations:

show all work!

18) $x-9=-11$
19) $y+-4.5=-13$
20) $-1.2 m=-6$
21) $\frac{z}{-5}=-25$
22) $n-(-2.3)=2$
23) $b+(-3)=\frac{-1}{4}$

Inequalities: Graph each inequality on a number line, and list 3 possible solutions AND 3 non-solutions

	Graph on a Number Line:	Possible Solutions	Non-solutions
27$) x>-11$	\longleftrightarrow		
28$) z \leq 1 / 2$	\longleftrightarrow		

Distributive Property (BABYD)

```
B(A+y)=BA+BY
Using the
distributive property...
\(4 \times 36\)
\(4(30+6)=4 \cdot 30+4 \cdot 6\)
```


LET'S DISTRIBUTE! (Distributive Property Practice)

Draw a picture to represent the following problems. Then, write a problem using the distributive property. Finally, evaluate the problem.

1) There are 3 girls. Each girl has 1 blue bows and 4 pink bows. How many bows do they have in all? Picture: Problem:
2) Ethan has 2 dogs. Each one has 3 bones and 2 leashes. How many bones do they have in all, and how many leashes do they have in all? Picture:

Apply the distributive property to wite the following in simplest terms:
HINT: Be careful when distributing negatives!!
3) $5(-2+8)$
4) $10(x+2)$
5) $14(a-b)$
6) $5(9-11)$
7) $-12(x+2)$
8) $9(-x+3)$

How to Combine Like Terms

To Combine Like Terms, we add together items that are the same to make a simplified shorter list of items.

Consider the following family take-away order:

We can write this in Algebra as: $\mathbf{2 b}+\mathbf{f}+\mathbf{d}+\mathbf{3 b}+\mathbf{2 f}+\mathbf{2 d}$ If we combine like items, we get a simplified list as follows:

In math, like terms have the

\qquad
\qquad
Mark the like terms by color-coding or putting different shapes around them:

$4 x y^{2}$	9	$2 y^{2}$	-5	$4 x$	x	$-2.5 y^{2}$

Simplify the following expressions:

1) $-4 x+5 x$
2) $1+5 v+v-6$
3) $4 n+4+1+3 n$
4) $11 a+11 a$
5) $-2 x-8-7 x+2$
6) $7 v+6 v$
7) $-8 x-10 x$
8) $6-7 n-2 n-8$
9) $2 k-k$
10) $-p-11+3$
11) $9 n+3 n$
12) $12 x+11-4$

Mathematical Properties

Simplifying Practice:

1. Identity Property of Addition: $c+0=$
2. Identity Property of Multiplication: $22 \mathrm{~b} \cdot 1=$
3. Multiplicative Property of Zero: 40,286 • $0=$
4. Commutative Property of Addition: $x+z=$ \qquad
5. Commutative Property of Multiplication: $k \cdot 6=$ \qquad
6. Associative Property of Addition: $(1+3)+9=$ \qquad
7. Associative Property of Multiplication: $(w \cdot h) \cdot /=$ \qquad

Name the property demonstrated by each statement.
8. $9.7=7.9$
9. $2 \cdot(3 \cdot 4)=(2 \cdot 3) \cdot 4$
10. $37 \cdot 0=0$
11. $1 \cdot 87=87$
12. $14+6=6+14$
\qquad
13. $3(6 a)=(3 \cdot 6) a$
14. $2 b+0=2 b$
\qquad
15. $55+6=6+55$
16. $6 \cdot 7=7 \cdot 6$
17. $(x+3)+y=x+(3+y)$
18. $1 \cdot m p=m p$
19. $9+(5+35)=(9+5)+35$
\qquad
\qquad
20. $6 b+0=6 b$

Use Distributive Property.
13) $3(-7-8 n)$
14) $-8(1+5 m)$
15) $8(r+1)$
16) $8(7 x+8)$
17) $2(6 n-8)$
18) $-3(8-b)$
19) $-5(8 v-2)$
20) $-2(x-5)$
21) $-(3 a-3)$
22) $-2(7-2 n)$
23) $-8(5-3 v)$
24) $-7(6 x-3)$

First, use Distributive Property, then Combine Llike Terms to simplify each expression.
25) $-n+4(n+1)$
26) $-3(1-3 x)+2 x$
27) $-2(-3 k+4)-7$
28) $-3 p-(-8+4 p)$
29) $-4+6(-4 x+3)$
30) $3 n+3(1+8 n)$
31) $-2+5(4+3 r)$
32) $-1+3(m+4)$
33) $-(-n+2)-2 n$
34) $-3(5+2 x)-7$
~ Grennslerting Uoreds to merth ~

In the REAL world, people aren't usually handed a set of equations, and told to "solve for x". However, we are often faced with problems for which writing

Exemaples:

The sum of x and -19	$x+(-19)$
4 less than the product of 5 and y	$5 y-4$
Twice the difference of 12 and x is 14	$2(12-x)=14$
8 Ress than the quotient of m and -3 equals -9	$\frac{m}{-3}-8=-9$

Thove REAlo-UJonld Exerumples:
\(\left.$$
\begin{array}{|l|c|}\hline \begin{array}{l}\text { Allison makes } n \text { dollars per hour, and her } \\
\text { boss gave her a raise of } \$ 2 \text { more per } \\
\text { hour. Write an expression how much she } \\
\text { will make if she works for } 40 \text { hours. }\end{array}
$$ \& \mathrm{n}+2 \rightarrow her hourly rate with the

raise\end{array}\right\}\)| $40(\mathrm{n}+2) \rightarrow$how much she makes
 in 40 hrs. |
| :--- |
| Davis is donating $2 / 5$ of his savings to his
 school. If he donates $\$ 77.60$, how much
 did he have in savings? |
| Also, consider using properties of rational
 numbers. (fractions \& decimals) |
| $\frac{2}{5} x=\$ 77.60$ |

Gretnslerting Uoreds to Merth PRACEICEI

Translate each statement below to an expression or equation.

Words...	Math!
1) the sum of m and -18	
2) x increased by -25	
3) twice the difference of x and -3	
4) one-tenth of x is -12	
5) 8 less than x divided by -2 equals 4	
6) 25% of x is 55	

Let's also look at other ways of expressing math:
Cobb County adds a 6% tax to most items sold. If an item costs x dollars, what will the price be after tax?
original price tax total

So, an "increase of 6\%" is the SAME as multiplying by 1.06

Yout Gest

7) Your bill at Red Lobster is y dollars. You decide to give server a 20% tip. Write an expression for the total cost.

8) There's a 30\%-off sale on Falcons jerseys! Write an expression for the total cost.
9) Halloween candy, c, goes on a 75%-off sale in November. Write an expression for the cost.

Solving Two-Step Equations

Two-step equations are like having a party at your house! YOU are the VARIABLE
The operation FARTHEST from you will leave first, so undo that one FIRST. The operation CLOSEST to you is your BFF and will stay the LONGEST, so you undo that operation LAST.
Eventually everyone goes home, and YOU, the VARIABLE, are left alone and ISOLATED!

EXAMPLE 1:

(Remember to ALWAYS check your answer with substitution!)

EXAMPLE 2: $\quad \frac{x-3}{4}=-2$

$$
\begin{aligned}
4 \cdot\left(\frac{x-3}{4}\right) & =(-2) \cdot 4 \\
x-3 & =-8 \\
x-3+3 & =-8+3 \\
x & =-5
\end{aligned}
$$

EXAMPLE 3: $-3 x+4=16$
$-4 \quad-4$
$\frac{-3 x}{-3}=\frac{12}{-3}$
X
$=-4$
5) $\frac{1}{2} x+18=24$
6) $\frac{5 x}{12}=10$

"/Let's Party!

Practice with Solving Two-Step Equations

First, let's make sure we know which step comes FIRST (that "just a friend" operation that's farthest from the variable), and which step
comes LAST (your BFF operation that you will save for last).

Equation	first step (inverse of forthest operation)	Last step (inverse of BFF operation)
$\frac{x+8}{-2}=-6$ Multiply both sides by -2	Subtract 8 from both sides	
$-3 x+14=44$		
$4 x-(-3)=15$		
$\frac{x+5}{3}=10$		

Now, YOU practice. SHOW ALL STEPS.

1) $3 y-10=8$
2) $-7 a+3=-4$
3) $\frac{x-12}{-5}=-11$
4) $16 x-(-11)=43$

Gino has $\$ 48$ to spend at the state fair. Admission is \$6, and tickets cost $\$ 1.50$ apiece. How many tickets can he purchase?

We can solve this conundrum with the equation,
$\$ 1.50$ is the $\pi 1.50 x+6=48 \leftarrow$ the total $\$$ Gino can spend must multiply the number ? \# of tickets add the admission price! of tickets, x, by their cost

Think it Through! If Gino has $\$ 48$ to spend, he'll first spend $\$ 6$ to get in. Subtract that, and he has $\$ 42$ left to spend.

$$
\begin{array}{r}
1.50 \mathrm{x}+6=48 \\
-6=-6 \\
1.50 \mathrm{x} \quad=42
\end{array}
$$

Tickets cost $\$ 1.50$ each. Gino has $\$ 42$ left. Divide 42 by 1.50

$\frac{1.50 x}{1.50}$	$=\frac{42}{1.5}$	
x	$=28$	
So, Gino can buy		
28 tickets at the fair!		

Alexandra's rectangular room has a perimeter of 54 feet. She knows that the length of the room is 15 feet. What is the width?

Perimeter $=2(1+w)$
$\begin{aligned} \frac{54}{2} & =\frac{2(15+w)}{2}\end{aligned}$
$27=15+w$
$-15 \quad-15 \quad$ The width of her
$\frac{-15}{12}=\frac{-15}{}$ \qquad
\qquad room is 12 feet

Yoat Bryl

Write an Equation for each problem below. Then solve!

1) Rory made $\$ 450$ selling cookies. She made $\$ 30$ from donations. The rest of the money was made from selling cookies at $\$ 3$ per box. How many boxes of cookies did she sell?
2) Emily is in Athens for the weekend, and she has budgeted $\$ 100$ to spend on souvenirs for herself and 8 friends. If she spends $\$ 36$ on her souvenir, how much does she have left to spend on each friend (if all 8 friends get the same item)?
3) Ben is putting down carpet in 5 rectangular classrooms. The total area of all the carpet is 400 square yards. If the length of each classroom is 10 yards, what is the width?
4) A father made $\$ 30$ helping his neighbor, and he added that money to money he already had in his wallet. Then, he split that money evenly amongst his 3 kids. If each child received $\$ 35$, how much money did the father start out with?

Solving One-Step Inequalities with Addition \& Subtraction

Solve for the variable just like you would do with an equation!

Now, YOU Try!
Solve the inequality, then graph the solution set.

1) $x-4<-1$
2) $m+(-8) \geq 10$
3) $z-(-1) \geq 1 \quad$ 4) $k+3>0$

Solving One-Step Inequalities with Multiplication \& Division

Solve for the variable just like you would do with an equation!

BUT... IF YOU MULTIPLY OR DIVIDE BY A NEGATIVE NUMBER, YOU MUST REVERSE THE INEQUALITY SYMBOL!

Solve the inequality, then graph the solution set.

1) $-3 x \leq 12$
2) $\frac{y}{6}>-36$
3) $\frac{n}{-9}<-3$
4) $12 x \geq 72$

Writing \& Graphing Inequalities First, make sure you know the symbols and their key words!			
Symbol	Meaning	Key Words	On the Number Line
$<$	Less than	Less than, fewer than, below	Open circle, 0
\leq	Less than or equal to	No more than, at most	Closed circle, -
\rangle	Greater than	Greater than, more than, above	Open circle, 0
\geq	Greater than or equal to	At least, no less than	Closed circle, -
\#	Not equal to	Not equal to	Open circle, 0

TIP: Keep the variable on the LEFT!
Then, the arrow at the end of your number line looks like your inequality symbol!
Examples:

1) Flo the Salesgirl is paid $\$ 200$ per week, plus $\$ 10$ per sale. She wants to make at least $\$ 480$ this week. Write an inequality for the number of sales Flo needs to make. Solve and graph

2) Sam lost $\$ 30$. Then, he split his remaining cash evenly into two savings accounts. If he put fewer than $\$ 12$ into those accounts, how much money did he begin with?

$$
\begin{array}{rlrl}
\frac{m-30}{2} & <12 & \\
2\left(\frac{m-30}{2}\right) & <12 x 2 & & \\
m-30 & <24 & & \text { This tells us that Sam started } \\
m & & \\
m & & \text { with less than } \$ 54 .
\end{array}
$$

You Try! Write an inequality for each situation, then solve. Lastly, graph the solution set on a number line. 1) Penn wants to save at least $\$ 160$. He has $\$ 16$ already \quad 2) There are 130 second-graders. Ten of them will not saved. If he earns $\$ 24$ per week, how many weeks will it take him to meet his goal? be going on a field trip. If the teachers want the kids to be in groups of no more than 8 , how many groups should there be?

Solving turo-SEep Inequalities

This is SUPER-easy!! You already know how to solve one-step inequalities. You also
know how to solve a two-step equation.
Well, guess what?? This is just like putting
both of those topics together! Easy, huh??
Let's try this one: $2 x-8 \geq 5$

$$
\begin{array}{ll}
2 x-8 \geq 5 & \text { Step 1: Use inverse } \\
2 x-8+8 \geq 5+8 & \text { of subtracting } 8 . \\
2 x \geq 13 & \\
\frac{2 x}{2} \geq \frac{13}{2} & \begin{array}{l}
\text { Step } 2 \text { 2: Use inverse }
\end{array} \\
x \geq 6.5 & \text { of multiplying by } 2 .
\end{array}
$$

Also, don't forget this important rule!

Inequality Rule

When multiplying or dividing by a negative number, you must reverse the inequality symbol.

$$
\begin{aligned}
-9 x-4 & >50 \\
+4 & >+4 \\
& = \\
-9 x & >54
\end{aligned}
$$

$$
\overline{-9}>\overline{-9}
$$

Notice the

$$
=
$$ symbol was

$$
x<-6
$$ reversed!

solving tuo-steep Inequalifires

Preactice

Solve and qraph each inequality below!

1) $10 x-3<37$
2) $-5 x+18 \geq 3$
3) $\frac{a}{-2}+4>-2$
4) $\frac{b}{4.5}-2<2$
5) $-9(x+3)>-27$
6) $40 \leq \frac{1}{2}(c+70)$

$\langle!!!!1!1!1!1!1!1!1!11+$

$\langle!!!!!!!!!!!!!!!!!!!\rangle$

SHOW ALL STEPS HERE:

1)	2)
3)	4)
5)	

Math 6/7 Unit 9 Post-Test REVIEW

1. Explain the difference between the solutions to $2 x+50=100$ and $2 x+50>100$ \qquad
\qquad
\qquad
2. Simplify: $-3(5 a+2 a)+5(3 a+a)$ \qquad

3. Simplify: $70+3(5 x-2)+(-15 x)$ \qquad
4. Solve: $2 x+10=80$
5. Solve: $-6 x+5=-19$
6. Solve and graph: $\frac{x}{5}+25 \geq 27$
7. Solve and graph: $-4 x-5<55$
$4 a+3$
8. Determine the simplified perimeter of the figure. \qquad

9. Determine the simplified area of the figure. \qquad
10. "Eight less than the product of a number and three is twenty-two."
a. Write the statement below as an algebraic equation:
b. What is that number? (Show steps)
11. Six more than twenty times a number is 206.
a. Write an equation to represent this problem:
b. What is that number? (Show steps)
12. Which equation and solution represent this situation?

Abbie and Ben ride their bikes each day for exercise. Ben rides two miles more than Abbe each day. If together they ride 9 miles, how many miles does Ben ride each day?
A. $2(x+x)=9$, Ben rides 3.5 miles
B. $2 x+x=9$, Ben rides 5.5 miles
C. $x^{2}+x=9$, Ben rides 6 miles
D. $x+(x+2)=9$, Ben rides 5.5 miles
13. James has spent $\$ 20$ of his $\$ 35$ video store gift card. He plans on using the remaining balance to rent video games. If the games cost $\$ 2.50$ each to rent, how many games can he rent? Write an equation AND solve.
14. Which of the following shows the solution to $-2 x+3<21$?
A.

C.

B.

D.

15. Stephen owns a bicycle rental stand at the beach. He uses the equation $c=3.50 h+5$ to determine c, how much he will charge to rent a bicycle for h hours. Which of the following is a reasonable amount someone would pay to rent a bicycle from morning to evening on one day?
A. $\$ 3.50$
B. $\$ 5.00$
C. $\$ 15.50$
D. $\$ 47.00$
16. A rectangle has 4 equivalent angles. Find the value of x in the diagram below.

90°	90°
90°	$5(x+13)^{\circ}$

17. Elijah is saving for a summer vacation in Florida that costs $\$ 550$. He has $\$ 250$ saved and hopes to lifeguard at $\$ 20$ per hour to earn the rest of the money. Which inequality below describes the number of hours, h, he must lifeguard to have enough money for the trip?
A. $250+20 h \leq 550$
B. $250+20 h \geq 550$
C. $250+20+h \leq 550$
D. $20 h \leq 550$
18. Which property is demonstrated by the equation shown? $4 \times(3 \times 18)=(3 \times 18) \times 4$
A. distributive property
B. commutative property
C. associative property
19. Which expression is NOT equivalent to $-8 x-24$?
A. $-10 x+2 x+10+(-34)$
B. $4(-2 x-6)$
C. $-8(x+3)$
D. $-8(x-3)$
