Unit 4

One-Step Equations \& Inequalities

Checking Solutions to Equations Solving Equations Writing Equations
Checking Solutions to Inequalities
Writing Inequalities
Graphing Inequalities on Number Lines Independent \& Dependent Variables Direct Variation

Name:

Math Teacher: \qquad

Unit 4 Pacing

Week of $\mathbf{1 / 1 0}$:

Equations - Checking Solutions and Solving

Week of 1/17:

Solving Equations, Equation Word Problems and Inequalities QUIZ

Week of $\mathbf{1 / 2 4}$:

Inequalities, Direct Variation and Review QUIZ

Week of 1/31:

Review, END OF UNIT TEST, UNIT 4 INTERIM ASSESSMENT

```
IXL Login (https://www.ixl.com/signin/ecms)
USERNAME (student ID@ecms):
```

\qquad

```
PASSWORD (student ID):
```

\qquad

```
Other Login Information
SITE:
```

\qquad

```
USERNAME:
``` \(\qquad\)
```

PASSWORD:

``` \(\qquad\)
```

SITE:

``` \(\qquad\)
```

USERNAME:

``` \(\qquad\)
```

PASSWORD:

``` \(\qquad\)

\section*{Unit 4: One-Step Equations and Inequalities Standards, Checklist and Concept Map}

\section*{Georgia Standards of Excellence (GSE):}

GSE6.EE.5: Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine if a given number in a set makes an equation or inequality true.

GSE 6.EE.6: Use variables to represent numbers and write expression when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set

GSE 6.EE.7: Solve real-world and mathematical problems by writing and solving equations of the form \(\mathrm{x}+\mathrm{p}=\mathrm{q}\) and \(\mathrm{px}=\mathrm{q}\) for cases in which \(\mathrm{p}, \mathrm{q}\) and x are all nonnegative rational numbers.

GSE 6.EE.8: Write an inequality of the form \(\mathrm{x}>\mathrm{c}\) or \(\mathrm{x}<\mathrm{c}\) to represent a constraint or condition in real-world problem. Recognize that inequalities of the form \(x>c\) or \(x\) <c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
GSE 6.EE. 9 : Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and use the equation \(d=65 t\) to show the relationship between distance and time.

What Will I Need to Learn??
_ Write expressions (from word problems) with a variable that represents a number
\(\qquad\) To substitute to check the solution of an equation
Write equations based on real-world problems
Solve equations based on real-world problems
To substitute to check the solution of an inequality
Write inequalities to represent real-world problems and represent on number line

Show relationships between two variables (independent and dependent) using an equation, a table, and a graph

Unit 4 Circle Map: Make a Circle Map below of important vocab and topics from the standards listed to the left.

\section*{Unit 4 IXL Tracking Log}
\begin{tabular}{|c|c|}
\hline Skill & Your Score \\
\hline Z. 1 (Does \(\times\) Satisfy an Equation?) & \\
\hline Z.2 (Which \(\times\) Satisfies an Equation?) & \\
\hline Z.3 (Write an Equation from Words) & \\
\hline Z.4 (Identify Expressions and Equations) & \\
\hline Z. 7 (Solve One-Step Add \& Sub Equations with Whole \#'s) & \\
\hline Z.8 (Solve One-Step Mult \& Div Equations with Whole \#f's) & \\
\hline Z.9 (Solve One-Step Equations with Whole Numbers) & \\
\hline Z.10 (Solve One-Step Add/Sub Equations with Decimals and Fractions) & \\
\hline Z.11 (Solve One-Step Mult/Div Equations with Decimals and Fractions) & \\
\hline Z.12 (Solve One-Step Add/Sub Equations: Word Problems) & \\
\hline Z.13 (Solve One-Step Mult/Div Equations: Word Problems) & \\
\hline Z.14 (Write a One-Step Equation: Word Problems) & \\
\hline Z.15 (Solve One-Step Equations: Word Problems) & \\
\hline Z.16 (Which Word Problem Matches the One-Step Equation?) & \\
\hline Z.18 (Solve Equations Involving Like Terms) & \\
\hline AA. 1 (solutions to Inequalities) & \\
\hline AA. 2 (Graph Inequalities on Number Lines) & \\
\hline AA. 3 (Write Inequalities from Number Lines) & \\
\hline AA. 4 (Write and Graph Inequalities: Word Problems) & \\
\hline AA. 5 (Solve One-Step Inequalities) & \\
\hline AA. 6 (Graph Solutions to One-Step Inequalities) & \\
\hline BB. 1 (Does (\(\mathrm{x}, \mathrm{y}\)) Satisfy an Equation?) & \\
\hline BB. 2 (Identify Independent \& Dependent Variables in Tables and Graphs) & \\
\hline BB. 3 (Write an Equation from a Graph Using a Table) & \\
\hline BB. 3 (Find a Value Using Two-Variable Equations) & \\
\hline BB. 4 (Identify Independent and Dependent Variables: Word Problems) & \\
\hline BB. 5 (Find a Value Using Two-Variable Equations: Word Problems) & \\
\hline BB. 8 (Complete a Table for a Two-Variable Relationship) & \\
\hline BB. 11 (Identify the Graph of an Equation) & \\
\hline BB. 13 (Graph a Two-Variable Equation) & \\
\hline BB. 14 (Interpret a Graph: Word Problems) & \\
\hline
\end{tabular}

Unit 4 - Vocabulary
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Term } & \multicolumn{1}{c|}{ Definition } \\
\hline \begin{tabular}{l}
Constant of \\
proportionality
\end{tabular} & \begin{tabular}{l}
The constant \(k\) in a direct variation \\
equation; it is the ratio of \(\frac{y}{x}\), or of \\
dependent variable
\end{tabular} \\
\begin{tabular}{l}
independent variable \\
rate. It is the same as unit
\end{tabular} \\
\hline \begin{tabular}{l}
Dependent \\
Variable
\end{tabular} & \begin{tabular}{l}
The "output" or \(y\) value, which "depends" \\
on the input (\(x\) value/independent \\
variable)
\end{tabular} \\
\hline \begin{tabular}{l}
Direct Proportion \\
(Direct Variation)
\end{tabular} & \begin{tabular}{l}
A relationship between two variables, \(x\) \\
(independent) and \(y\) (dependent) that \\
can be written as \(y\)-kx, where \(k \neq 0\)
\end{tabular} \\
\hline Equation & \begin{tabular}{l}
A mathematical sentence containing an \\
equal sign, showing two equivalent values
\end{tabular} \\
\hline Independent & \begin{tabular}{l}
The "input" or \(x\) value, which determines \\
the "output" or \(y\) value/dependent \\
variable
\end{tabular} \\
\hline Variable & \begin{tabular}{l}
A statement showing that two values are \\
NOT equal, using one of the following \\
signs: \(>,<, \geq, \leq\) or \(\neq\)
\end{tabular} \\
\hline Inequality & \begin{tabular}{l}
Opposite operations that "undo" each \\
other
\end{tabular} \\
\hline Inverse \\
Operation
\end{tabular}\(\quad\)\begin{tabular}{l}
A symbol, usually a letter, that represents \\
a number
\end{tabular}

Unit 4 - Vocabulary - You Try
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Term } & \multicolumn{1}{c|}{ Definition } \\
\hline \begin{tabular}{l}
Constant of \\
proportionality
\end{tabular} & \\
\hline \begin{tabular}{l}
Dependent \\
Variable
\end{tabular} & \\
\hline \begin{tabular}{l}
Direct Proportion \\
(Direct Variation)
\end{tabular} & \\
\hline Equation & \\
\hline Independent & \\
\hline Variable & \\
\hline Inequality & \\
\hline Inverse \\
Operation & \\
\hline Variable & \\
\hline
\end{tabular}

\section*{Math 6 - Unit 4: One-Step Equations and Inequalities Review \#1}
1) What are inverse operations? \(\qquad\)
2) Write 3 key words that tell you to do addition and 3 key words that tell you to do subtraction in a word problem.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
3) Jack's Candy Shop sold 8 lollipops today. He now has only 5 lollipops left to sell. How many lollipops did he have originally?

4) Alex has some flowers and picks two more for her bouquet. She now has 11 flowers. How many flowers did she start out with?
\begin{tabular}{|c|c|}
\hline Draw a Picture: & \begin{tabular}{c}
Write your equation and SHOW ALL \\
WORK!
\end{tabular} \\
What does your variable represent? & Solution: \\
\hline
\end{tabular}
5) Mrs. Ledesma has \(x\) dollars. Amanda has 3 times more dollars than Mrs. Ledesma. If Amanda has \(\$ 90\), write an equation and solve for the number of dollars Mrs. Ledesma has.

Equation: \(\qquad\) Solution: \(\qquad\)
Work:
6) Daneya spends half as many hours doing homework as her older brother, Dejon. If Dejon spends 4 hours doing homework, write an equation and solve for the number of hours, \(x\), that Daneya does homework.

Equation: \(\qquad\) Solution: \(\qquad\) Work:

Solve each equation. Show all steps. Include a "check".
7) \(m+25=39\)
8) \(12 x=138\)
9) \(z-29=8\)
10) \(\frac{y}{7}=21\)
11) \(x+\frac{1}{4}=3 \frac{1}{2}\)
12) \(m-2.8=5.2\)
13) \(3.5 x=70\)
14) \(\frac{m}{2}=7.2\)

\section*{Equations \& Parts of Equations}

An \(\qquad\) is a mathematical sentence containing an equal sign that shows two equivalent values.

\section*{\(x+2=6\)}

The equation says: what is on the left \((x+2)\) is equal to what is on the right (6)
So an equation is like a statement "this equals that".
Here we have an equation that says \(4 x-7\) equals 5 , and all its parts:

A Variable is a symbol for a number we don't know yet. It is usually a letter like x or y .
A number on its own is called a Constant.
A Coefficient is a number used to multiply a variable (\(4 x\) means 4 times \(x\), so 4 is a coefficient)

An Operator is a symbol that shows an operation, ex: \(+,-, x, \div\).
Variables on their own (without a number next to them) actually have a coefficient of 1 (\(\mathbf{x}\) is really the same as \(\mathbf{1 x}\))
15) Create your own word problem. Write an equation and show all the work to solve.

\section*{Solutions to Equations}

Solutions to equations are values for the variables that make the two sides equal.

Think of a correct equation as a balanced scale.

If an equation has a variable you can check to see if a number is a solution to an equation by substituting the number in for the variable. If you get the same number on both sides, you have found a solution to the equation.
Example: EQUATION: \(x+15=27\)

\section*{Is \(\mathrm{x}=12\) a solution?}

\(\mathrm{x}=12\) is a solution
because \(12+15=27\)

\section*{Is \(x=10\) a solution?}

\section*{You Try:}
1) Is \(x=3\) a solution to the equation, \(x+5=10\) ?
2) Is \(y=5\) a solution to the equation, \(\frac{30}{y}=6\) ?
3) Is \(z=12\) a solution to the equation, \(8 z=95\) ?

\section*{You Try:}

\section*{Determine if the following value for the variable is a solution to} the equation. Write yes or no.
1) \(9+x=21\), for \(x=11\)
2) \(n-12=5\), for \(n=17\)
3) \(25 r=75\), for \(r=3\)
4) \(72 \div q=8\), for \(q=9\)
5) \(28+c=43\), for \(c=15\)
6) \(u \div 11=10\), for \(u=111\)
7) \(\frac{k}{8}=4\), for \(k=24\)
8) \(16 x=48\), for \(x=3\)
9) \(73-f=29\), for \(f=54\)
10) \(67-j=25\), for \(j=42\)
11) \(39 \div v=13\), for \(v=3\)
12) \(88+d=100\), for \(d=2\)
13) \(14 p=20\), for \(p=5\)
14) \(6 w=30\), for \(w=5\)
15) \(7+x=70\), for \(x=10\)
16) \(6 n=174\), for \(n=29\)

Replace each \(\diamond\) with a number that makes the equation correct.
17) \(5+1=2+\diamond\)
18) \(10-\diamond=12-7\)
19) \(\diamond \cdot 3=2 \cdot 9\)
20) \(28 \div 4=14 \div \diamond\)
21) \(\diamond+8=6+3\)
22) \(12 \cdot 0=\diamond \cdot 15\)
23) Carla had \$15. After she bought lunch, she had \(\$ 8\) left. Write an equation using the variable, \(x\), to model this situation. What does your variable represent?
24) Seventy-two people signed up for the soccer league. After the players were evenly divided into teams, there were 6 teams in the league. Write an equation to model this situation using the variable, \(x\).

\section*{Solving Equations}

There are many different ways to solve equations, but in general, the best way to solve an equation is to use inverse operations.

Inverse operations are opposite operations that "undo" each other. Addition is the inverse operation of SUBTRACTION and subtraction is the inverse operation of ADDITION.
Multiplication is the inverse operation of DIVISION and Division is the inverse operation of MULTIPLICATION.
When you solve equations, you should:
\(1^{\text {st }}\) identify the operation you need.
\(2^{\text {nd }}\) apply the inverse operation to both sides of the equation.
3 rd check your solution by putting it back into the equation.

\section*{Example}

1. Solve \(8=x+3\). Check your solution.

\section*{Method 1 Use models.}

Model the equation using counters for the numbers and a cup for the variable.

Remove 3 counters from each side.

There are 5 counters remaining.
\begin{tabular}{|c|c|}
\hline Method 2 & Use symbols. \\
\hline \(8=x+3\) & Wite the equation. \\
\hline -3 \(=-3\) & Subtract 3 from each side to "undo" the addition of 3 on the right. \\
\hline \(5=x\) & \\
\hline Check & \\
\hline \(8=x+3\) & Write the equation. \\
\hline
\end{tabular}
\(8 \xlongequal{=} 5+3\) Replace \(\times\) with 5 .
\(8=8 \checkmark \quad\) This sentence is true.
Other Examples:
\[
\begin{array}{rlrl}
x-2 & =3 & & \text { Write the equation. } \\
x+2 & =+2 \\
x & & \text { Add 2 to each side. } \\
\text { Check } & & \text { Simplify. } \\
x-2 & =3 & & \\
5-2 & =3 & & \text { Write the equation. } \\
3 & =3 \checkmark & & \text { This sentence is true. } x \text { with } 5 .
\end{array}
\]
\[
\begin{aligned}
2 x & =10 \\
\frac{2 x}{2} & =\frac{10}{2} \quad \text { Write the equation. } \\
x & =5
\end{aligned}
\]
\[
\text { Check } \begin{aligned}
2 x & =10 & & \text { Write the original equation. } \\
2(5) & =10 & & \text { Replace } x \text { with } 5 . \\
10 & =10 & & \text { This sentence is true. }
\end{aligned}
\]
\[
\frac{a}{3}=7
\]
the equation.
\[
\frac{a}{3}(3)=7(3)
\]

Muttiply each slde by 3.
\[
a=21
\]

Check \(\frac{a}{3}=7\)
Simplify.
\[
\frac{21}{3} \stackrel{7}{=} 7
\]

Replace a with 21.
\(7=7 \quad\) This is a true sentence.

\section*{Subtraction Property of Equality}
\begin{tabular}{|c|c|c|}
\hline Words & \multicolumn{2}{|l|}{If you subtract the same number from each side of an equation, the two sides remain equal.} \\
\hline \multirow[t]{4}{*}{Examples} & Numbers & Algebra \\
\hline & \(5=5\) & \(x+2=3\) \\
\hline & -3 \(=-3\) & \(-2=-2\) \\
\hline & \(2=2\) & \(x=\) \\
\hline
\end{tabular}

When you solve an equation by subtracting the same number from each side of the equation, you are using the Subtraction Property of Equality.

\section*{You Try:}
1) \(c+2=5\)
2) \(6=x+5\)
3) \(3.5+y=12.75\)

\section*{Addition Property of Equality}

Words If you add the same number to each side of an equation, the two sides remain equal.

\section*{Examples}
\begin{tabular}{rl}
Numbers & Algebra \\
\(5=5\) & \(x-2=3\) \\
\(+3=+3\) & \(+2=+2\) \\
\hline \(8=8\) & \(x=5\)
\end{tabular}

When you solve an equation by adding the same number to each side of the equation, you are using the Addition Property of Equality.

\section*{You Try:}
1) \(x-7=4\)
2) \(y-6=8\)
3) \(9=a-5\)

\section*{Division Property of Equality}

Words If you divide each side of an equation by the same nonzero number, the two sides remain equal.

\section*{Examples}
\begin{tabular}{cc}
Numbers & Algebra \\
\(18=18\) & \(3 x=12\) \\
\(\frac{18}{6}=\frac{18}{6}\) & \(\frac{3 x}{3}=\frac{12}{3}\) \\
\(3=3\) & \(x=4\)
\end{tabular}

When you solve an equation by dividing both sides of the equation by the same number, you are using the Division Property of Equality.

\section*{You Try:}
1) \(3 x=15\)
2) \(8=4 x\)
3) \(2 x=14\)

\section*{Multiplication Property of Equality}

Words If you multiply each side of an equation by the same nonzero
number, the two sides remain equal.
Examples
\[
\begin{aligned}
& \text { Numbers } \\
& 3=3 \\
& 3(6)=3(6) \\
& 18=18
\end{aligned}
\]
\[
\begin{aligned}
& \text { Algebra } \\
& \frac{x}{4}=7 \\
& \frac{x}{4}(4)=7(4) \\
& x=28
\end{aligned}
\]

When you solve an equation by multiplying each side of the equation by the same number, you are using the Multiplication Property of Equality.

\section*{You Try:}
1) \(\frac{x}{8}=9\)
2) \(\frac{y}{4}=8\)
3) \(\frac{m}{5}=9\)

\section*{Scaffolded Equation Solving}

Use the organizer below to practice solving one-step-equations.

\begin{tabular}{|l|r|l|r|r|}
\hline \multirow{3}{*}{3} & Problem & \(x+13=42\) & Problem & \\
\cline { 2 - 5 } & \begin{tabular}{r}
Inverse Operation \\
On BOTH Sides)
\end{tabular} & & Substitution & \\
\cline { 2 - 5 } & Solution & & Check & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|l|r|r|}
\hline & Problem & \(\frac{x}{8}=15\) & Problem & \\
\cline { 2 - 4 } 4 & \begin{tabular}{r}
Inverse \\
Operation \\
(On BOTH Sides)
\end{tabular} & & Substitution & \\
\cline { 2 - 4 } & Solution & & Check & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|}
\hline \multirow{4}{*}{5} & Problem & \(18 x=45\) & Problem & \\
\cline { 2 - 5 } & \begin{tabular}{r}
Inverse Operation \\
(On BOTH Sides)
\end{tabular} & & Substitution & \\
\cline { 2 - 5 } & Solution & & Check & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|}
\hline \multirow{4}{*}{\(\mathbf{6}\)} & Problem & \(x+52=100\) & Problem & \\
\cline { 2 - 4 } & \begin{tabular}{r}
Inverse Operation \\
(On BOTH Sides)
\end{tabular} & & Substitution & \\
\cline { 2 - 5 } & Solution & & Check & \\
\hline
\end{tabular}

\section*{More Equation Solving (\(\mathbf{x} / \div\))}

\section*{More Equation Solving (Mixed)}

Solve each equation. Show ALL your work.
\begin{tabular}{|l|l|}
\hline 1) \(6 x=96\) & 2) \(\frac{y}{18}=5\) \\
\hline 3) \(y-84=212\) & 4) \(y+19=30\) \\
\hline 5) \(4 b=48.8\) & 6) \(\frac{h}{3.2}=10\) \\
\hline & \\
\hline
\end{tabular}

In an equation chain, you use the solution of one equation to help you find the solution of the next equation in the chain. The last equation in the chain is used to check that you have solved the entire chain correctly.
Complete each equation chain:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{1)} & \(5+a=12\) & so \(\mathrm{a}=\) \\
\hline & \(\mathrm{ab}=14\) & so \(\mathrm{b}=\) \\
\hline & \(16 \div b=c\) & so c = \\
\hline & \(14-d=c\) & so d = \\
\hline & \(e \div d=3\) & so e = \\
\hline & \(a+e=25\) & check \\
\hline
\end{tabular}
2) \begin{tabular}{ll}
\(9 f=36\) & so \(f=\square\) \\
\(g=13-f\) & so \(g=\square\) \\
\(63 \div g=h\) & so \(h=\square\) \\
\(h+i=18\) & so \(i=\square\) \\
\(j-i=9\) & so \(j=\square\) \\
\(j \div f=5\) & Check
\end{tabular}

Challenge: Create your own equation chain using these numbers for the variables: \(a=10, b=6, c=18\) and \(d=3\)

\section*{Equations Error Analysis}

Sally is a silly little girl who makes mistakes! In Column \#1, analyze her work and circle her mistake. In Column \#2, explain what she did wrong. In Column \#3, show how Silly Sally should work out the problem correctly. Show ALL work!
\begin{tabular}{|c|c|c|}
\hline Silly Sally's Work (Circle her mistake): & What did Silly Sally do wrong? & Show Silly Sally how it's done! (Show ALL steps!) \\
\hline \[
\begin{aligned}
& x+5=28 \\
& +5 \quad+5 \\
& \hline x \quad=33
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
\frac{12 a}{12} & =\frac{108}{12} \\
a & =8
\end{aligned}
\] & & \\
\hline \[
\begin{array}{r}
w-42=18 \\
+18 \quad+18 \\
\hline w \quad=36
\end{array}
\] & & \\
\hline \[
\begin{gathered}
\frac{y}{15}=3 \\
\div 15 \div 15 \\
\hline y=5
\end{gathered}
\] & & \\
\hline \[
\begin{array}{cc}
x+23.45=32 \\
-\quad 23.45 & -23.45 \\
\hline x= & 9.45
\end{array}
\] & & \\
\hline \[
\begin{aligned}
& 4 \frac{1}{2} b=36 \\
& \cdot 4 \frac{1}{2} \quad .4 \frac{1}{2} \\
& b=162
\end{aligned}
\] & & \\
\hline
\end{tabular}

\section*{Solving One-Step Equations Problems}

You can solve a word problem using one-step equations.
1) Figure out what you know and what you want to know. What you want to know will be represented by a variable.
2) Set up an equation to solve for the unknown (variable).
3) Use inverse operations to solve.
4) Don't forget to label your solution and write it as statement.

\section*{Example:}

Edgar jogs for 20 minutes. He stretched then jogs some more. Altogether, he jogs for 35 minutes. How far does he jog after he stretches?

What do you know? \(\qquad\)
What do you want to know? \(\qquad\)
What does your variable represent? \(\qquad\)
What operation is used in the equation? \(\qquad\)
What inverse operation will you use to solve? \(\qquad\)
Write the one-step equation to solve. \(\qquad\)
Solution: \(\qquad\)
Solution as a statement: \(\qquad\)

\section*{You Try:}
1) Jan used 22 gallons of water in the shower. This amount is 7 gallons less than the amount she used for washing clothes. How much water does Jan use to wash clothes?

What do you know? \(\qquad\)
What do you want to know? \(\qquad\)
What does your variable represent? \(\qquad\)
What operation is used in the equation? \(\qquad\)
What inverse operation will you use to solve? \(\qquad\)
Write the one-step equation to solve. \(\qquad\)
Solution: \(\qquad\)
Solution as a statement: \(\qquad\)
2) While training for a sports event, Oliver hiked 5.3 miles each day. If he hiked for a total of 42.4 miles, how many days did Oliver hike?

What do you know? \(\qquad\)
What do you want to know? \(\qquad\)
What does your variable represent? \(\qquad\)
What operation is used in the equation? \(\qquad\)
What inverse operation will you use to solve? \(\qquad\)
Write the one-step equation to solve. \(\qquad\)
Solution: \(\qquad\)
Solution as a statement: \(\qquad\)

\section*{Additional One-Step Equation Practice}
1) Robyn had some video games, and then bought 4 more games. If she now has a total of 10 games, how many did she start out with?

What does your variable represent in the word problem? \(\qquad\)
What operation will you use to solve the word problem? \(\qquad\)
One Step Equation: \(\qquad\)
Solution: \(\qquad\)
2) Three friends found some money on the playground. They split the money evenly, and each person got \$14. How much money did they find on the playground?

What does your variable represent in the word problem? \(\qquad\)
What operation will you use to solve the word problem? \(\qquad\) 7) \(\frac{3}{4} d=12\)
8) \(19=\frac{x}{7}\)
10) \(1.6 w=72\)
3) Josh sent 574 text messages over the last 7 days. On average, how many text messages did he send each day?

What does your variable represent in the word problem? \(\qquad\)
What operation will you use to solve the word problem? \(\qquad\)
One Step Equation: \(\qquad\)
Solution: \(\qquad\)

\section*{Inequalities}

An inequality is a mathematical sentence that compares two quantities. We use the symbols and wording below to write inequalities.
\begin{tabular}{|c|c|c|}
\hline Symbol & \begin{tabular}{c}
Meaning/Word Phrases
\end{tabular} & Example \\
\hline\(<\) & \begin{tabular}{c}
is less than \\
is fewer than \\
is below
\end{tabular} & \begin{tabular}{c}
is greater than \\
is more than \\
is above
\end{tabular} \\
\hline\(\leq\) & \begin{tabular}{c}
is less than or equal to \\
at most \\
no more than
\end{tabular} & \begin{tabular}{c}
\(7 \leq 10\) \\
\(10 \leq 10\)
\end{tabular} \\
\hline\(\geq\) & \begin{tabular}{c}
is greater than or equal to \\
at least \\
no less than
\end{tabular} & \begin{tabular}{c}
\(12 \geq 9\) \\
\(12 \geq 12\)
\end{tabular} \\
\hline
\end{tabular}

Determining if a number is a solution to an inequality requires you to substitute the value into the inequality and check to see if the value makes the inequality true.

\section*{Example:}

The "Dollar Savers" store sells everything less than \(\$ 5\). Would you be able to buy the following items at the "Dollar Savers" store? Use the inequality \(x<5\) to substitute. Circle Yes or No.

Pg.15a

\section*{You Try:}
1) To ride a roller coaster, you must be at least \(48^{\prime \prime}\) tall. Write an inequality and substitute to determine who can ride the roller coaster. Circle Yes or No.

Silly Steve Yes \({ }^{40^{\prime \prime}}\) No

Cool Carl

Laughing Lou

48" \({ }^{\prime \prime}\) No

Toothy Tim 52"

\section*{Circle all of the values that will satisfy each of the given} inequalities.
\begin{tabular}{lllll}
2) \(y>8\) & 6 & 8 & 9 & 15 \\
3) \(m \leq 525\) & 525 & 510 & 500 & 650 \\
4) \(c<22\) & 12 & 25 & 30 & 22 \\
5) \(f \geq 80\) & 81 & 0 & 75 & 80 \\
6) \(g \geq 27\) & 27 & 26 & 25 & 20 \\
7) \(n<16\) & 15 & 10 & 0 & 16 \\
8) \(a>48\) & 36 & 48 & 24 & 64 \\
9) \(z \leq 100\) & 55 & 3 & 110 & 100
\end{tabular}

\section*{Writing Inequalities}

Inequalities can be written to represent many situations.

\section*{Examples:}

\section*{There are at least 25 students in the auditorium.}
\(n \geq 25\) "at least" means greater than or equal to
n represents the number of students in the auditorium

\section*{No more than 150 people can occupy the room.}
\(r \leq 150\) "no more than" means less than or equal to
r represents the possible room capacity

\section*{You Try:}

\section*{Write an inequality for each given situation.}
1) You cannot eat more than 2 pieces of your Halloween candy per day.
2) There are less than 15 people in the room.
3) There are at most 12 books on a shelf.
4) There are fewer than 200 people at the game.
5) You must get at least 30 minutes of exercise each day.
6) You must be at least 15 years old to get your driver's permit.
7) A pony is less than 14.2 hands tall.
8) You must be over 12 years old to ride the go karts.
9) The pig weighs at most 220 pounds.
10) Every candy bar costs at least \(\$ 2.20\).
11) You must complete at least \(80 \%\) of your homework to attend the Homework Stars Celebration.
12) There are no more than seven people on the boat.
13) More than 40 people attended the movie last night.
14) You must be under 54 " to ride the kiddie rides at Six Flags.
15) Getting at least 8 hours of sleep at night keeps you healthy.

\section*{Graphing Inequalities}

Inequalities can be graphed on a number line to illustrate all of the possible solutions.
\(\mathbf{1}^{\text {st }}\) draw a number line and include the number in your inequality.
\(\mathbf{2}^{\text {nd }}\) draw an open or closed dot on the number (depending on which inequality symbol is in the inequality. Use an open dot (0) if the inequality has the greater than (\(>\)) or less than (<) symbol. Use a solid dot (\(\cdot\)) if the inequality has the greater than or equal to \((\geq)\) or less than or equal to \((\leq)\) symbol.
\(3^{\text {rd }}\) draw a line and an arrow that shows all of the possible solutions.

\section*{Examples:}

\section*{\(\boldsymbol{n}>\mathbf{9}\)}

Place an open dot at 9. Then draw a line and an arrow to the right.

The values that lie on the line make the sentence true. All numbers greater than 9 make the sentence true.
equal to means included
\(n \leq 10\)
Place a closed dot at 10. Then draw a line and an arrow to the left.

All numbers 10 and less make the sentence true.

\section*{TIP: If you keep the variable on the LEFT, the arrow at the end of your number line looks just like your inequality symbol.}

\section*{You Try:}

Graph the following inequalities on a number line. Then write a word phrase to describe each inequality.
1) \(n \leq-5\)
2) \(\mathrm{n} \leq 5\)
\(\stackrel{1}{\leftrightarrows}-6\)
\(\stackrel{-1}{-7}-6\)
3) \(n<1\)
\(\begin{array}{lllllllllll}-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3\end{array} 45467\)
\(\overleftrightarrow{-7}-6\)
5) \(n>5\)
\begin{tabular}{lllllllllllll}
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
\(\stackrel{-7}{-6}-1 \begin{array}{llllllllllll}-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\)
\(\qquad\)
7) \(n \geq-7\)

8) \(\mathrm{n}<0\)

Write the inequality AND graph for each problem below in 7-10
7) Fetty Wap has at least 3 fans in Mrs. Ledesma's 3rd period math class.

Inequality: \(\qquad\)

Graph:

8) Mr. Shaw should send Mrs. Shaw more than 6 roses per day. Inequality: \(\qquad\)

Graph:
\[
\begin{array}{llllllllllllll}
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\]
9) Shawn snuck into a G Rated movie because he thought you had to be at most 7 years old.

Inequality: \(\qquad\)

Graph: \begin{tabular}{|c|ccccccccccc}
\hline-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
6 & 7
\end{tabular}
10) When trick or treating, Daniella's dream came true. A lady told her she could take no less than 5 pieces of candy.

Inequality: \(\qquad\)

Graph:

\section*{More Practice with Inequalities}

Write an inequality for each situation, and graph on a number line.
1) Students must score at least 800 to pass the CRCT.
\(\qquad\)
2) You must be shorter than 48 " to ride the kiddie train.
\(\qquad\)
3) You should brush your teeth at least twice a day.
4) A good credit score is higher than 699.
\(\qquad\)
5) Classes can have no more than 34 students.
6) AJ needs to save more than \(\$ 500\).

7) A book costs less than \(\$ 20\)
\(\square\)

\section*{More Inequalities Practice}
\begin{tabular}{|ll}
1) Which number is a \\
to the inequality be \\
\(\mathbf{x}>4\) \\
\begin{tabular}{ll}
a) 1 & b) 2 \\
c) 4 & d) 5
\end{tabular}
\end{tabular}
3) Which statement describes "a number more than 22"?
a) \(x<22\)
b) \(x>22\)
c) \(x \leq 22\)
d) \(x \geq 22\)
5) Which statement describes " a number no more than 17"?
a) \(x<17\)
b) \(x>17\)
c) \(x \leq 17\)
d) \(x \geq 17\)
7) Which number is a solution to \(x+4>12\)
a) 3
b) 5
c) 7
d) 9
9) Which number is a solution to \(\quad 3 x>12\)
a) 4
b) 5
c) 2
d) 3
11) Which inequality matches the graph below?

a) \(n>1\)
b) \(\mathrm{n} \leq 1\)
c) \(n \geq 1\)
d) \(n \geq-1\)
2) Which number is NOT a solution to the inequality below?
\(x \leq 8\)
a) 6
b) 7
c) 8
d) 9
4) Which statement describes "a number less than or equal to 43 "?
a) \(x<43\)
b) \(x>43\)
c) \(x \leq 43\)
d) \(x \geq 43\)
6) Which statement describes "at least 32"?
a) \(x<32\)
b) \(x>32\)
c) \(x \leq 32\)
d) \(x \geq 32\)
8) Which number is NOT a solution to \(\quad \mathbf{x - 3}<\mathbf{1 0}\)
a) 7
b) 8
c) 10
d) 14
10) Which number is NOT a solution to \(2 x \leq 10\)
a) 3
b) 4
c) 5
d) 6
12) Which inequality matches the graph below?
a) \(v>-3\)
b) \(v>3\)
c) \(v \leq-3\)
d) \(v<3\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
13) Which inequality matches the graph below? \\
a) \(x>3\) \\
b) \(x<3\) \\
c) \(x \leq 3\) \\
d). \(x \geq 3\)
\end{tabular} & \begin{tabular}{l}
14) Which inequality matches the graph below? \\
a) \(\mathrm{n}<0\) \\
b) \(n \leq 0\) \\
c) \(n \geq 0\) \\
d) \(n>0\)
\end{tabular} \\
\hline 15) Solve \(x+11>19\) & 16) Graph the solution to the inequality from question \#15. \\
\hline 17) Solve \(x-3 \leq 5\) & 18) Graph the solution to the inequality from question \#17. \\
\hline 19) Solve \(3 x<12\) & 20) Graph the solution to the inequality from question \#19. \\
\hline 21) Solve \(\frac{x}{4} \geq 2\) & 22) Graph the solution to the inequality from question \#21. \\
\hline 23. Write an inequality for this statement " \(x\) is less than or equal to 7". & \begin{tabular}{l}
24. Write an inequality for this statement \\
" \(x\) is greater than -9"
\end{tabular} \\
\hline
\end{tabular}

\section*{Direct Variation \& Functions}

A direct variation equation is used to relate two quantities using a constant of variation.
\begin{tabular}{|c|c|c|}
\hline What? & Meaning & Example \\
\hline The situation & You have a problem or situation that describes a constant relationship. There is a constant, \(\mathbf{k}\), that will stay the same. & \begin{tabular}{l}
Bozo performs in 10 circus acts per day. \\
(10 is the constant, \(\boldsymbol{k}\), because it stays the same.
\end{tabular} \\
\hline The rule & Direct variation can be written as an equation, \(y=k x\), where \(k\) represents the constant. & \begin{tabular}{l}
\[
y=10 x
\] \\
x represents the number of days Bozo performs. y represents the \# of total circus acts performed.
\end{tabular} \\
\hline Table of Ordered Pairs & \begin{tabular}{l}
For every input, \(\mathbf{x}\), there is one output, \(\boldsymbol{y}\). Each \((\mathbf{x}, \boldsymbol{y})\) pair gives you an ordered pair that you can graph on a coordinate plane. \\
FYI: The \(\mathbf{x}\) value is the independent variable and the \(\boldsymbol{y}\) value is the dependent variable. (The \(\boldsymbol{y}\) value is "dependent" on whatever the \(\mathbf{x}\) value is.)
\end{tabular} & \begin{tabular}{l}
Plug in input values for \(\mathbf{x}\) and get \(\boldsymbol{y}\) values. \\
In \(\mathbf{0}\) days, Bozo performs \(\mathbf{0}\) acts. In 1 day, Bozo performs 10 acts. In \(\mathbf{2}\) days, Bozo performs 20 acts and so on... \\
You can write this information in a table: \\
Each set is an ordered pair to be graphed. Pairs can be written as \((0,0),(1,10)\) etc.
\end{tabular} \\
\hline Graph & \begin{tabular}{l}
The ordered pairs can be graphed because \(\mathbf{x}\) and y vary proportionally, they will always: \\
1) Start at \((0,0)\) \\
2) Form a straight line
\end{tabular} & Bozo's Performances \\
\hline
\end{tabular}

\section*{You Try:}

A table is useful for changing cups to ounces.
\begin{tabular}{|c|c|}
\hline Cups & Ounces \\
\hline 1 & 8 \\
\hline 2 & 16 \\
\hline 3 & 24 \\
\hline 4 & 32 \\
\hline 5 & 40 \\
\hline
\end{tabular}
1) How many ounces are in 1 cup? \(\qquad\)
2) How many ounces are in 3 cups? \(\qquad\)
3) If "6 cups" were added to the table, how many ounces would be listed? \(\qquad\)
An equation shows the relationship between cups and ounces.
\[
\begin{aligned}
\text { ounces } & =8 \cdot \text { cups } \\
y & =8 x
\end{aligned}
\]

You can also write this information in an input/output table.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Input \(\rightarrow\) & \(\mathbf{x}\) & 1 & 2 & 3 & 4 & 5 \\
\hline Output \(\rightarrow\) & \(\mathbf{y}\) & 8 & 16 & 24 & 32 & 40 \\
\hline
\end{tabular}

For every value of \(\mathbf{x}\), there is one value of \(\boldsymbol{y}\). This relationship is called a function.
4) Which variable stands for the output value? \(\qquad\)
5) Which variable stands for the input value? \(\qquad\)
6) What is the output value for \(\mathbf{x}=2\) ? \(\qquad\)

\section*{Practice with Functions and Tables}

Using the given rules, find the missing \(\mathbf{x}\) and \(\boldsymbol{y}\) values.
1) \(y=9 x\)
2) \(y=12 x\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & 0 & 2 & 3 & 5 & 8 \\
\hline \(\mathbf{y}\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & 1 & & 6 & & 12 \\
\hline \(\mathbf{y}\) & & 48 & & 120 & \\
\hline
\end{tabular}
3) \(y=1.25 x\)
4) \(y=\frac{2}{5} x\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\mathbf{x}\) & 0 & 2 & 4 & 6 & 8 \\
\hline \(\mathbf{y}\) & & & & & \\
\hline \(\mathbf{x}\)
\end{tabular} \begin{tabular}{|l|l|l|l|l|l|}
\hline \(\mathbf{x}\) & 0 & 4 & 9 & & 20 \\
\hline \(\mathbf{y}\) & & & & 4 & \\
\hline
\end{tabular}

Using the given values, determine the equations in terms of \(y=k x\)
5) Rule: \(\qquad\) 6) Rule: \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & 0 & 1 & 2 & 3 & 4 \\
\hline \(\mathbf{y}\) & 0 & 5 & 10 & 15 & 20 \\
\hline
\end{tabular}

How do you know this rule works?
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\mathbf{x}\) & 1 & & 6 & & 12 \\
\hline \(\mathbf{y}\) & & 48 & & 120 & \\
\hline
\end{tabular}

How do you know this rule works?

\section*{Direct Variation Problem Solving}
1) Vanessa is purchasing tickets to a Bebe Rexha concert. Tickets cost \(\$ 35\) apiece.

What is the constant of variation, \(\boldsymbol{k}\) ? \(\qquad\)
\(x\), the input/ind. variable represents: \(\qquad\)
\(y\), the output/dep. variable represents: \(\qquad\)
What direct variation equation represents this situation?
\(\qquad\)
Complete the chart below using your equation.
\begin{tabular}{|c|l|l|l|l|l|}
\hline x & 0 & 2 & 3 & 4 & 6 \\
\hline y & & & & & \\
\hline
\end{tabular}
2) \(T J\) is saving up for a new Fortnite skin. He earns \(\$ 7.50\) for each chore he does.

What is the constant of variation, \(\boldsymbol{k}\) ? \(\qquad\)
\(x\), the input/ind. variable represents: \(\qquad\)
\(y\), the output/dep. variable represents: \(\qquad\)
What direct variation equation represents this situation?

Complete the chart below using your equation.
\begin{tabular}{|c|l|l|l|l|l|}
\hline x & 0 & 2 & 10 & 15 & 50 \\
\hline y & & & & & \\
\hline
\end{tabular}
3) There are 37 boys in the drama club. They want to buy new props, so they are all going to pitch in some money. They all want to pitch in the same amount.

What is the constant of variation, \(\boldsymbol{k}\) ? \(\qquad\)
x , the input/ind. variable represents: \(\qquad\)
\(y\), the output/dep. variable represents: \(\qquad\)
What direct variation equation represents this situation?

Complete the chart below using your equation.
\begin{tabular}{|c|l|l|l|l|l|}
\hline x & 0 & 2 & 3 & 5 & 10 \\
\hline y & & & & & \\
\hline
\end{tabular}
4) The students in math class earn 3 Jolly Ranchers for every homework assignments that they complete.

What is the constant of variation, \(\boldsymbol{k}\) ? \(\qquad\)
\(x\), the input/ind. variable represents: \(\qquad\)
\(y\), the output/dep. variable represents: \(\qquad\)
What direct variation equation represents this situation?

Complete the chart below using your equation.
\begin{tabular}{|c|l|l|l|l|l|}
\hline\(x\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(y\) & & & & & \\
\hline
\end{tabular}
5) The direct variation ALWAYS uses the formula \(\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}\)

Therefore, when \(x=0, y\) always equals \(\qquad\) _.

\section*{Graphing Direct Variation}

In direct variation, your (\(x, y\)) data creates ordered pairs that can be graphed.
A direct variation graph will ALWAYS begin at the point \((\mathbf{0}, \mathbf{0})\). A direct variation graph will ALWAYS be a straight line.

\section*{Example:}

Anthony is selling lemonade for \(\$ 2\) per cup. Write an equc

\(x\) represents how many cups are sold; this is the input, or the independent variable
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
\(x\) \\
(cups sold)
\end{tabular} & \(y(\$)\) \\
\hline 0 & 0 \\
\hline 1 & 2 \\
\hline 2 & \\
\hline 4 & \\
\hline
\end{tabular}

Graph the ordered pairs.

\section*{You Try:}

Use the direct variation equation to complete the table and then graph the ordered pairs.
1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(y=3 x\)} & \(\mathbf{x}\) & 0 & 1 & 2 & 3 \\
\cline { 2 - 6 } & \(\mathbf{y}\) & & & & \\
\hline
\end{tabular}

2)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(y=0.8 x\)} & \(\mathbf{x}\) & 0 & 1 & 4 & & \\
\cline { 2 - 7 } & \(\mathbf{y}\) & & & & 4.8 & 8 \\
\hline
\end{tabular}

4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(y=2 x\)} & \(\mathbf{x}\) & 0 & 2 & 3 & 4 & \\
\cline { 2 - 7 } & \(\mathbf{y}\) & & & & & 10 \\
\hline
\end{tabular}

\section*{Direct Variation in the REAL World}

An iPod Nano can hold up to 16 gigabytes (GB) of data.
1) How many gigabytes can be stored on 0 Nanos? \(\qquad\)
How many on 1 Nano? \(\qquad\)
How many on 5 Nano? \(\qquad\) How many on 12 Nano? \(\qquad\)
2) If you have enough iPod Nanos to hold 80 GB, how many iPod Nanos do you have? \(\qquad\)
3) Complete the chart:
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(x\) (\# of iPods) & 0 & 2 & & & 25 \\
\hline\(y\) (total GB) & & & 64 & 160 & \\
\hline
\end{tabular}
4) What is the direct variation equation (in terms of \(y=k x\)): \(\qquad\)
5) Based on this problem, answer the following:
a) In words, what does the input (x) represent? \(\qquad\)
b) In words, what does the output (y) represent? \(\qquad\)
c) In words, what does the constant (k) represent? \(\qquad\)
6) As the number of iPods increases, the total number of GB \(\qquad\)
7) Look at the values in the table above. Write each set of \((x, y)\) values as an ordered pair

\section*{(x,y)}
\(\qquad\)
8) Graph the ordered pairs:

\section*{Math 6 - Unit 4: One-Step Equations and Inequalities Review \#2}

\section*{Knowledge and Understanding}
1) When solving equations, why is it important to substitute your solution into the equation at the end. \(\qquad\)
2) What is the difference between an open circle and a closed circle in an inequality? \(\qquad\) —
\(\qquad\)

\section*{Proficiency of Skills}

\section*{Solve each equation. Remember to show all work!}
3) \(t-1=11 \frac{1}{2}\)
4) \(\frac{n}{5}=10\)
5) \(r+7=49\)
6) \(k \leq 7\)
7) \(a>120\)
8) \(x \neq 3\)

\section*{Application}
9) A quarterback threw a ball \(x\) total yards over 10 games. If he averaged 90 yards per game, write an equation that represents this situation and solve for \(x\), the total number of yards thrown.

Equation: \(\qquad\)
Solution: \(\qquad\)
10) Janiah had \(x\) dollars in her bank account. After spending \(\$ 182\) on Christmas gifts, she has \(\$ 200\) left in her account. Write an equation and solve for \(x\), the amount she originally had in her account.

Equation: \(\qquad\)
Solution: \(\qquad\)
11) The weight limit on a cargo plane is 55 tons. Write an inequality to represent the weight limit, \(w\), and graph it.

Inequality: \(\qquad\)

12) What inequality is graphed on the number line? \(\qquad\)

13) Maggie needs at least 15 lbs . of chocolate to make her chocolate fountain work. Write an inequality and graph it.

Inequality: \(\qquad\)
\(\qquad\)
14) Which problem situation matches the equation \(12 x=240\) ?
a) Jamie sold 240 newspaper subscriptions each month for 12 months. What is \(x\), the total number of newspaper subscriptions that Jamie sold in 1 year?
b) Brenna cycled a total of 240 miles this month. She cycled 12 miles less this month than last month. What is \(x\), the number of miles Brenna cycled last month?
c) Mary charges \(\$ 12\) per hour for labor to paint houses. What is \(x\), the number of hours Mary worked if she charged \(\$ 240\) for labor?
d) Sara bought 12 ride tickets and \(x\) game tickets. How many game tickets did she buy if she bought 240 tickets in all?
15) Andy makes \(\$ 2.50\) per chore he does on the weekends. Write a direct variation equation: \(\qquad\)
Make an \((x, y)\) table of values and graph it.
16) Draw an example of a graph of direct variation. Then draw an example of a graph that is NOT a direct variation.```

