Unit 2 Rate, Ratio and Proportional Reasoning

Ratios Unit Rate Proportions Measurement Conversion Percents

Required Skills Skill **Your Score** R.1 (Write a Ratio) Week of 9/3 **R.4** (Identify Equivalent Ratios) R.6 (Ratio Tables) R.8 (Unit Rates) R.12 (Do the ratios form a proportion?) Week of 9/9 R.13 (Solve the Proportion) T.3 (Convert and Compare Customary Units) T.7 (Convert and Compare Metric Units) **S.5** (Percents of numbers and money amounts) Week of 9/16 **S.8** (Find what percent one number is of another) **S.10** (Find the total given a part and a percent)

Unit 2 IXL Tracking Log

Unit 2: Rate, Ratio and Proportional Reasoning Standards, Checklist and Concept Map Georgia Standards of Excellence (GSE):

MGSE6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote Candidate A received, Candidate C received nearly 3 votes."

MGSE6.RP.2: Understand the concept of a unit rate a/b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $\frac{3}{4}$ cup of flour for each cup of sugar."

<u>MGSE6.RP.3b</u>: Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, at that rate, how many lawns could be mowed in 35 hours?

MGSE6.RP.3: Use ratio and rate reasoning to solve real-world mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

<u>MGSE6.RP.3a</u>: Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

MGSE6.RP.3c : Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.

<u>MGSE6.RP.3d</u>: Use ratio and rate reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing.

.

What Will I Need to Learn??

I can understand ratios
I can understand unit rates
I can solve unit rate problems
I can make tables of equivalent ratios, find missing values,
and plot points in a coordinate plane
I can solve problems using proportions
L can find percent of a number
I can find the whole when given part and percent

- _____ I can convert Metric units
- _____I can convert Customary units

Unit 2 Calendar: Math 6/7

9/2	9/3	9/4	9/5	9/6
Labor Day Holiday	Unit 2 Pretest Ratios	Ratios & Ratio Tables	Ratios & Ratio Tables	Quiz; Unit Rates
9/9	9/10	9/11	9/12	9/13
Rates & Proportions	Solving Proportions COMPUTER LAB	Solving Proportions	Measure -ment	Proportions & Quiz
9/16	9/17	9/18	9/19	9/20
Percent Problems	Percent Problems	Percent Problem Solving	Unit 2 Review	Unit 2 Test

Unit 2 - Vocabulary

Term	Definition			
Cross Product	In a proportion, this is the result of multiplying the numerator of one ratio and the denominator of the other ratio			
Customary System	The primary system of measurement used in the US, which uses a variety of conversions			
MetricThe system of measurement that uses base-10 model; used by most countrie				
Percent	A number out of 100			
Proportion	An equation of equivalent ratios			
Rate	A ratio that compares quantities measured in different units			
Ratio	A comparison of two numbers			
Unit Rate	A comparison of two measurements in which one of the terms has a value of 1			

Unit 2 – Vocabulary – <u>You Try</u>

Term	Definition	Illustration or Example
Cross Product		
Customary System		
Metric System		
Percent		
Proportion		
Rate		
Ratio		
Unit Rate		

- 1. What is a ratio?
- 2. What is a rate?
- 3. What is a unit rate?
- 4. What is a percent?
- 5. Fill in the ratio table:

9	15			54
12		39	48	

6. 77 is 35% of what number? _____

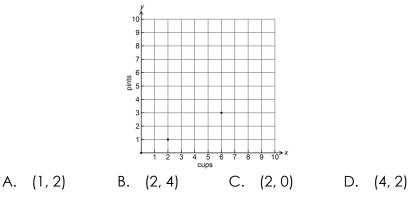
7. Find 30% of 70.

8. Find the value of x. $\frac{15}{25} = \frac{x}{30}$

9. Write the ratio as a unit rate: \$145.98 for 9 tickets.

- 10. Ansley drove 520 miles in 8 hours. Taylor drove 210 miles in 3 hours.
 - a. Who drove the fastest rate of speed?
 - b. How do you know? _____

- 11. A circus elephant is going to stand on a ball. Lulu the Elephant weighs 2 Tons. The ball can hold up to 3,000 lbs.a. Can Lulu use this ball? Yes No
 - b. Explain your answer.


12. The table shows the number of each item sold at the fair. What two items would the ratio 3:4 represent?

Item	Quantity Sold
Popcorn	64
Nachos	60
Hot Dog	28
Candy Bar	48

- 13. The ratio of boys to girls in a class is 4:8. If there are 24 students in the class, how many are boys?
- 14. In a class of 25 students, 80% DID return their permission slips for the school field trip. How many students did NOT return their permission slips?
- 15. The table below shows the cost for varying number of books. If the rate stays the same, determine the value of *n*.

Number of Books	Cost
6	\$81
10	\$135
12	\$162
15	n

- 16. PBIS Middle School held a car wash as a fundraiser. 15 trucks were washed. The other 40% of the vehicles were cars. How many total vehicles did they wash?
- 17. The graph below compares cups to pints. Which of the following ordered pairs would also satisfy this relationship?

18. Drilon's paycheck last week was \$146.50. He would like to put 6% of his earnings in his savings account. How much money should he put in his savings account?

a. \$8.26 b. \$8.79 c. \$9.30 d. \$16	b. \$8.79	с. \$9.30	d. \$16.03
---------------------------------------	-----------	-----------	------------

19. The prices of 4 different bottles of lotion are given in the table. Which size bottle is the BEST value?

Size	Price
25 ounces	\$4.50
20 ounces	\$3.00
15 ounces	\$1.80

- A. The 25-oz bottle
- B. The 20-oz bottle
- C. The 15-oz bottle
- D. They all have the same value
- 20. Driving at a constant speed, Daisy drove 260 miles in 6 hours. How far would she drive in 1 hour? 5 hours? 21 hours? Create a table.
- 21. Chompers is 76 cm long. How many mm is this?
 - a. .76 mm b. 7.6 mm c. 760 mm 7,600 mm

Ratios

A _____ is a comparison of two quantities by division.

The ratio of two red paper clips to six blue paperclips can be written in the following ways:

Just like fractions, we usually represent a ratio in simplest form.

ORDER MATTERS!

Example:

Several students named their favorite flavor of gum. Write the ratio that compares the number of students who chose fruit to the total number of students.

Favorite Fla	vors of Gum	Fruit: 3
<u>Flavor</u>	<u># of</u> <u>Responses</u>	Total: $9 + 8 + 3 + 1$, or 21
Peppermint	9	fruit flavor responses $\cdots \gg \frac{3}{21} = \frac{1}{7} \checkmark \cdots$ The GCF of 3 total responses $\cdots \gg \frac{3}{21} = \frac{1}{7} \checkmark \cdots$ and 21 is 3.
Cinnamon	8	$\frac{\text{fruit flavor responses } \dots \gg 3}{\text{total responses } \dots \gg 21} = \frac{1}{7} \ll \dots \left[\begin{array}{c} \text{The GCF of 3} \\ \text{and 21 is 3.} \end{array} \right]$
Fruit	3	\ _{÷3} /
Spearmint	1	The ratio is $\frac{1}{7}$, 1 to 7, or 1:7.

So, 1 out of every 7 students preferred fruit-flavored gum.

You Try:

Use the stars to answer questions 1 and 2.

- 1) Write the ratio of black stars to white stars in three different ways.
- 2) Write the ratio of white stars to black stars in three different ways.

Use the table below to answer questions 3-6.

Favorite Pets		
Snake	15	
Dog	10	
Cat	6	
Hamster	8	
Fish	1	

Pleasssssse remember to sssssssimplify!

- 3) What is the ratio of people who chose snakes as their favorite pet to those who chose dogs?
- 4) What is the ratio of people who chose **cats AND dogs** to those who chose **hamsters**?
- 5) What is the ratio of those who chose **snakes** as their favorite pet to **everyone** that was surveyed?
- 6) What is the ratio of those who chose **cats** to those who chose **fish**?

Use the words, "East Cobb Middle School" to answer #s 7-11.

- 7) What is the ratio of vowels to consonants?
- 8) What is the ratio of letters in ECMS to East Cobb Middle School?
- 9) What is the ratio of the letters in "East Cobb" to the letters in "Middle School"?
- 10) What is the ratio of the letters in "Middle School" to the letters in "East Cobb"?
- 11) Crain says the ratio of letters in "East" to "Cobb" is 4:4. Hailey says that ratio is 1:1. Who is correct? Explain your answer.

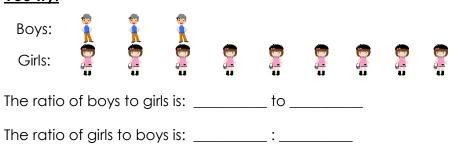
The table below shows the number of balloons purchased in each color at Party City. Using this information, answer questions 12-15.

Color	Red	Yellow	Blue	Green
Quantity Sold	10	20	15	25

- 12) Which two items does the ratio 10:20 represent?
- 13) Which two items does the ratio 3:5 represent?
- 14) Which two items does the ratio 5 to 3 represent?

15) Which two items does the ratio $\frac{3}{2}$ represent?

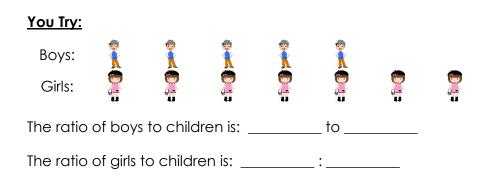
16) Which two items does the ratio 4:3 represent?


Different Types of Ratios

Part to _____ ratios are ratios that relate one part of a whole to another part of a whole.

Example:

There are 4 boys for every 6 girls. The ratio of boys (a part of the group of kids) to girls (another part of the group of kids) is 4:6 (simplified to 2:3).


You Try:

Part to _____ ratios are ratios that relate one part of the whole to the whole.

Example:

There are 4 boys (a part of the group of children) for every 10 children (the whole group of children), written as 4:10 (simplified to 2:5). On the other hand, 6 girls for every 10 children is written as 6:10 (simplified to 3:5).

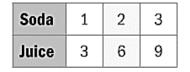
More Practice with Ratios

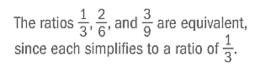
Use the table to answer the following questions.

Favorite Snacks of the 6 th Graders				
Ice Cream	12			
Takis	6			
Candy	9			
Fruit	4			
Sunflower Seeds	2			
Seaweed	5			
Cookies	7			

Find the following ratios. Don't forget to simplify if necessary.

1) candy to seaweed _____ to _____

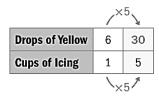

- 2) sunflower seeds to cookies ______ to _____
- 3) Takis to ice cream _____ to _____
- 4) candy to cookies and fruit ______ to _____
- 5) cookies to Takis _____ to _____
- 6) fruit to candy _____ to _____
- 7) Takis and fruit to seaweed ______ to _____
- 8) ice cream to sunflower seeds ______ to _____
- 9) candy to total _____ to _____
- 10) cookies and ice cream to total _____ to _____


Ratio Tables

A ______ is a table of values that displays

equivalent ratios.

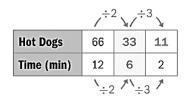
Example:


Equivalent ratios express the same relationship between quantities. In the example above, for every 1 soda, there are 3 juices.

Examples:

1) To make yellow icing, you mix 6 drops of yellow food coloring with 1 cup of white icing. How much yellow food coloring should you mix with 5 cups of white icing to get the same shade?

Use a ratio table. Since $1 \times 5 = 5$, multiply each quantity by 5.


So, add 30 drops of yellow food coloring to 5 cups of icing.

2) In a recent year, Joey Chestnut won a hot dog eating contest by eating nearly 66 hot dogs in 12 minutes. If he ate at a constant rate, determine about how many hot dogs he ate every two minutes.

Divide each quantity by one or more common factors until you reach a quantity of 2 minutes.

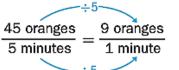
So, Chestnut ate about 11 hot dogs every 2 minutes.

Practice with Ratio Tables

Find the missing values to complete the ratio tables.

1)	2		6	10
-		•	0	10
	4	8		
			3	
	7	1.4		20
	7	14	21	28
	8	16		48
	5	10	25	30
	5	10	ZĴ	30
	2	6	8	10
	5			
	5			
	3	9	21	27
				36
				00
	4		12	16
	6	12		
7)	11		33	44
	15	30		
		1	1	1
)	5		15	
	12	24		48
	L	I	1	1

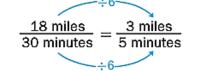
Unit Rates


A **rate** is a ratio comparing two quanities of different kinds of units. A **unit rate** has a denominator of 1 unit when the rate is written as a fraction. To write a rate as a unit rate, divide the numerator and the denominator of the rate by the denominator.

ধ্প	Ratio	Rate	Unit Rate
	15:5 =	$\frac{15 \text{ characters}}{5 \text{ seconds}} =$	3 characters 1 second

Examples:

Samantha picked 45 oranges in 5 minutes. Write this rate as a unit rate.


 \dot{W} rite the rate as a fraction. Compare the number of oranges to the number of minutes. Then divide.

So, the unit rate is $\frac{9 \text{ oranges}}{1 \text{ minute}}$, or 9 oranges per minute.

The Australian dragonfly can travel 18 miles in 30 minutes. How far can the dragonfly travel in 1 minute?

Write the rate as a fraction. Compare the distance to the number of minutes. Then divide.

The ratio 3 to 5 cannot be simplified to a whole number rate. It can be written as $\frac{3 \text{ miles}}{5 \text{ minutes}}$ or as a unit rate of $\frac{3}{5}$ mile to 1 minute.

The dragonfly can travel $\frac{3}{5}$ mile every minute.

Unit Rates

Jay drove 360 miles on 24 gallons of gas.	What is the rate?	Find the unit rate. Show your work!
Maya drove 540 miles on 30 gallons of gas.	What is the rate?	Find the unit rate. Show your work!
1452 calories in a 12- slice cake.	What is the rate?	Find the unit rate. Show your work!
880 calories in an 8- slice pie	What is the rate?	Find the unit rate. Show your work!
Cheers Cheers 15-oz Cheerios for \$3.95	What is the rate?	Find the unit rate. Show your work!
10-oz Cheerios for \$2.85	What is the rate?	Find the unit rate. Show your work!

Equivalent Ratios and Unit Rate

You can find a unit rate by setting up an equation of equivalent ratios. This equation is called a proportion.

Example:

First, set up a proportion: $\frac{Water Bottles}{Forks} = \frac{21}{7} = \frac{1}{7}$

You can look at the relationship that is created for the forks. The 7 was divided by 7 to make 1. Then apply that same relationship to the numerator. 21 divided by 7 is 3.

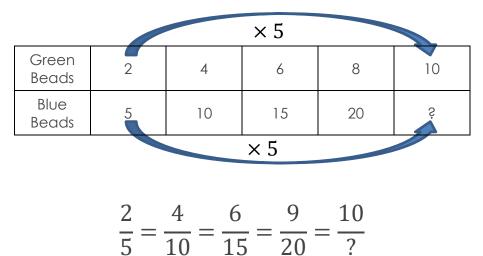
So, there are 3 water bottles for every 1 fork.

You Try:

1) Megan paid \$12.00 for 3 lip gloss flavors. What is the unit rate?

2) Erin paid \$12.00 for 5 lip gloss flavors. What is the unit rate?

Equivalent Ratios


You can find equivalent ratios in two different ways, using a table or a graph.

Tables

- 1) Fill in the information already given to you.
- 2) Find the pattern by writing the numbers as a fraction.
- 3) Fill in the rest of the table based on the pattern. (Multiply the top and bottom number by a common factor.)

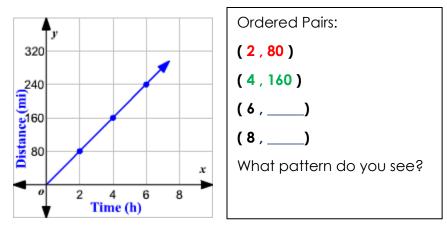
Example:

1) Find the missing value by finding equivalent ratios.

5 10 15 20 ? Since the pattern shows that we are multiplying the numerator and denominator of our original fraction by the same factor, you can see that we multiplied 2 times 5 to get 10. That means we will multiply 5 by 5, so the ? must be equal to 25.

You Try:

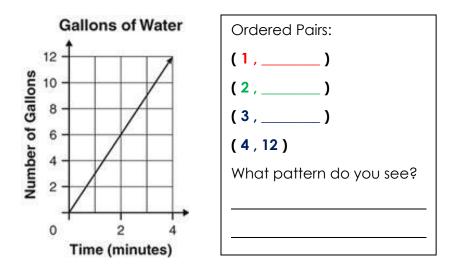
1) Find the missing value by finding equivalent ratios.


Green Beads	3	9	15	12	24
Blue Beads	5	15	25	20	Ş

$$\frac{3}{5} = \frac{9}{15} = \frac{15}{25} = \frac{12}{20} = \frac{24}{2}$$
 ? ? = _____

Graphs:

- 1) Plot the points that are already given to you.
- 2) Draw a line to connect the points.
- 3) Plot the rest of the points based on the pattern you see.


Example: On a recent trip, Mr. Tripman noticed that every two hours, he drove 80 miles. Use the graph below to find out how far he would drive in 4 hours. What about 6 hours? 8 hours?

Using the graph, state the unit rate in miles per hour:

You Try

 Every 4 minutes, a garden hose puts out 12 gallons of water. Use the graph below to determine how much water is put out in 1 minute, 2 minutes, and 3 minutes.

_____ gallons are used in 1 minute. (the unit rate)

- _____ gallons are used in 2 minutes.
- ____ gallons are used in 3 minutes.
- 2) Mr. Bailey doesn't want to use more than 60 gallons of water. What is the longest amount of time he can run the hose?

Proportions

_ is an equation that relates two equivalent А ratios. Ratios are said to be proportional if they can both be simplified to the same amount.

 $\frac{1}{2} = \frac{5}{10}$ $\frac{1}{2} = \frac{5}{8}$ This is a proportion. This is **NOT** a proportion

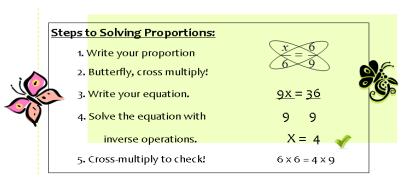
You can check to see if two ratios are in proportion by crossmultiplying. The cross-products must be equal.

Example:

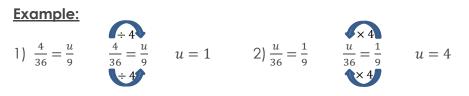
Determine whether the ratios are proportional. Circle = $or \neq .$

1) $\frac{6}{10} \bigoplus \neq \frac{3}{5}$ The ratios are equal, so they are proportional.

You Try:


1)
$$\frac{4}{5} = \neq \frac{12}{15}$$
 2) $\frac{8}{12} = \neq \frac{2}{3}$ 3) $\frac{7}{8} = \neq \frac{8}{9}$

4)
$$\frac{4}{5} = \neq \frac{7}{8}$$
 5) $\frac{4}{12} = \neq \frac{5}{15}$ 6) $\frac{1}{3} = \neq \frac{1}{6}$


Solving Proportions

One way to solve proportions is to cross multiply and see what factor you need to make the cross-products equal.

Example:

Another way that you can solve a proportion is to find the factor that is shared across the numerator or denominator and use that same relationship to complete the proportion.

You Try:

Find the missing number in each proportion:

1) $\frac{r}{15} = \frac{4}{20}$ 2) $\frac{8}{10} = \frac{20}{y}$ 3) $\frac{x}{30} = \frac{3}{4}$

4) $\frac{2,5}{5} = \frac{j}{4}$ 5) $\frac{12}{a} = \frac{21}{7}$ 6) $\frac{k}{3} = \frac{14}{21}$

Proportions Word Problems

Example:

1) Talia won a pie-eating contest, eating 6 pies in 10 minutes. At that rate, how many pies can she eat in two hours?

 $\frac{pies}{minutes} \quad \frac{6}{10} = \frac{p}{25} \qquad 10p = 25(6)$ 10p = 150 p = 15

You Try:

1) Matthew hiked 10 miles in 4 hours. At that rate, how far can he hike in 18 hours?

3) If 16 necklaces can be bought for \$40, how much will 12 necklaces cost?

4) Ben can correctly solve 120 multiplication problems in 1 ½ minutes. At this rate, how long would it take him to solve 400 problems?

5) Emily types at a speed of 45 words 50 seconds. How many words can she type in 10 minutes?

- 2) A recipe calls for 2.5 cups of sugar to make 12 cookies. How much sugar is needed to make 300 cookies?
- 6) Nora needs 1.5 cups of sugar to make 12 cupcakes. How much sugar does she need to make 44 cupcakes?

Finding the "Percent of" a Number

Percent means _____

In math "**of**" means _____

To find the "percent of" a number:

- 1) Change the percent to a _____.
- 2) Then, _____.

100% means 1 whole. Therefore 100% of 85 is 85. That's just like changing 100% to its equivalent decimal, 1, and multiplying by 85. If you have less than 100% of a number, the solution is less than the original number.

Example:

Find 75% of 36.

OPTION 1 (Change the percent to a decimal) .75 <u>x 36</u> 450 <u>2250</u> 27.00	OPTION 2 (Change the percent to a fraction) $\frac{75}{100} \cdot \frac{36}{1} = \frac{3}{4} \cdot \frac{36}{1} = 27$ 1			
Therefore, 75% of 36 is 27.				

TIP: Always, always, always check your answer to see if it is reasonable. (Does it make sense?) 75% is less than 100% so 27 should be less than 36. 75% is greater than 50% so 27 should be greater than half of 36, which is 18. If those things are true, you are probably on the right track!

You Try:

For each problem below, circle the ONLY reasonable answer based on what you know.

Problem	Circle the ONLY reasonable answer				
90% of 40	9	36	17	57	
25% of 72	18	54	2.5	70	
50% of 1600	56	16	1650	800	
110% of 55	1.5	115	60.5	25	
5% of 80	58	4	804	85	

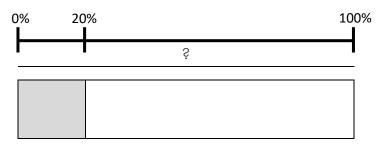
Find the "percent of" each value given below.

1) 50% of 12 2) 20% of 45 3)	3) 15% of 100
------------------------------	---------------

4) 5% of 40	5) 150% of 92	6) 25% of 90
7) 100% of 183	8) Eddie's mystery nur What is his mystery	

9) "Arachibutyrophobia" is the fear of peanut butter getting stuck to the roof of your mouth. In a survey of 150 people, 2% of them have arachibutyrophobia. How many people surveyed have this fear?

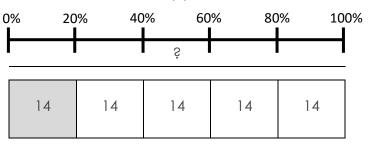
10) When making peanut butter and jelly sandwiches, 20% of people put the peanut butter on first. Out of 75 people, how many people would NOT put peanut butter on first?


Finding the "Whole" when Given the Percent

Example:

There are 14 candies in a bag that is 20% full. How many candies are in a full bag?

USE A TAPE DIAGRAM


Whole: Unknown (# of candies in full bag) Part: 14 candies Percent: 20%

11) At ECMS, about 25% of the 6th graders made an A in math. If there are 416 6th graders, how many made an A?

12) Last year, ECMS had 1280 students. If we have 110% of that amount this year, how many students are at ECMS this year?

If there are 14 candies in 20%, then there are 14 candies in each of the other 20% sections of the diagram. The total number of candies in the bag is the sum of all the quantities: 14 + 14 + 14 + 14 + 14 = 70 or 14(5) = 70.

Thus, there are 70 candies in a full bag.

USE A TABLE

There are 14 candies in a bag that is 20% full. How many candies are in a full bag?

Percentage	0%	20%	40%	60%	80%	100%
Part	0	14	28	42	56	70

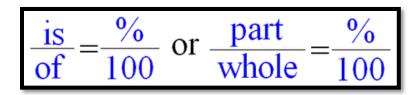
<u>You Try:</u>

Use a table to solve the percent problems below.

1) 16 is 80% of what number?

Percentage		16	
Part	20%	80%	100%

2) Peyton made a 90% on her math test. If she got 27 questions correct, how many total questions were on the test?


Percentage		
Part		

3) 64% of the students in a classroom are girls. If there are 16 girls, how many total students are in the class?

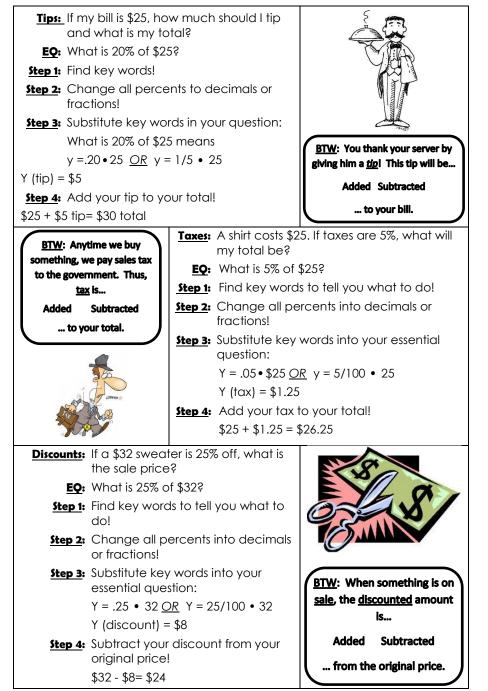
Percentage		
Part		

The Percent Proportion

You can use a percent proportion to solve for any one piece when given the other 3.

Example:

Finding a percent (part) of a number (whole):	Finding the whole given the percent (part):
What is 20% of 240?	60 is 75% of what number?
First, set up your proportion:	First, set up your proportion:
<u>x</u> <u>20</u>	60 _ 75
$\frac{1}{240} = \frac{1}{100}$	$\frac{1}{x} = \frac{1}{100}$
Then solve by cross multiplying:	Then solve by cross multiplying:
x = 20	60 75
240 100	x 100
$x \bullet 100 = 240 \bullet 20$	$60 \bullet 100 = x \bullet 75$
$x \bullet 100 = 4800$	$6000 = x \bullet 75$
$x = \frac{4800}{2}$	x _ 6000
x = 100	$x = \overline{75}$
x = 48	x = 80
48 is 20% of 240.	60 is 75% of 80.


You Try:

Use one of the methods you have learned to solve the following р

Problem Solving with Percents

nave learned to solve the following	1) Martha put 20% of her paycheck in the bank. If her
2) 8 is 40% of what number?	paycheck was \$150, how much did she put in the bank? a) Should your answer be MORE or LESS than \$150? b) Solution = c) Write your answer in a complete sentence:
4) 18 is 25% of what number?	 2) Ethan got 90% of the problems correct on a quiz. If he got 27 problems correct, how many problems were on the quiz? a) Should your answer be MORE or LESS than 27? b) Solution =
	 3) Whitney bought a pair of jeans that cost \$25. If tax is 5%, how much tax will she pay? a) Should your answer be MORE or LESS than \$25? b) Solution =
6) 62 is 50% of what number?	 4) Ellis' bill at Red Lobster was \$18.50. If he gives his server a 20% tip, how much tip will he leave? a) Should your answer be MORE or LESS than \$18.50? b) Solution =
	2) 8 is 40% of what number? 4) 18 is 25% of what number?

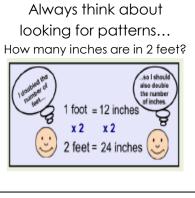
Tips, Taxes and Discounts

You Try: Problem Solving with Percents!

1) H&M has is having a 20% off	2) Vinny's family ordered pizza,
sale on winter boots! If Hayden	and the bill was \$21.85. They
wants to buy a pair that originally	gave the delivery person a 20%
costs \$40, how much will she	tip. How much did they tip?
save? [Is 40 the PART or WHOLE?]	[Is 21.85 the PART or WHOLE?]
3) At the museum's gift shop, Peyton bought a geode for \$9.50. If tax was an additional 6%, how much did she pay in all?	4) The candy store has a 15%-off sale. If Kaitlyn is buying \$8.49 in candy, how much will she save?
5) Mrs. Bothers gave a \$9 tip at	6) Most people pay about 28% of
Waffle House. If the bill for dinner	their salary towards taxes. If Andy
was \$30, what percent did she	paid \$14,000 in taxes, what was
tip?	his total salary?
7) Tomeya got 92% of the	8) The 6th-grade teachers ate
problems right on a quiz. If there	90% of the candy from a bag of
were 25 problems on the quiz,	chocolate. If they ate 54 pieces,
how many did she get right?	how many were in the FULL bag?

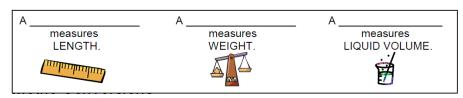
Converting Customary (Standard) Units of Measurement

Common Customary Measurements		
Length	Weight	Capacity
1 foot = 12 inch	1 pound = 16 ounces	1 cup = 8 fluid ounces
1 yard = 36 inches	1 ton = 2,000 pounds	1 pint = 2 cups
1 yard = 3 feet		1 quart = 2 pints
1 mile = 5,280 feet		1 quart = 4 cups
1 mile = 1,760 yards		1 gallon = 4 quarts
		1 gallon = 16 cups
		1 gallon = 128 fluid ounces

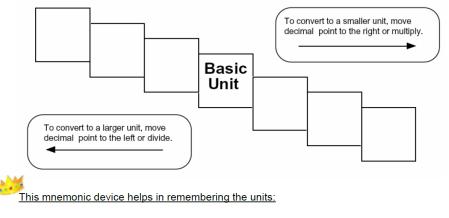

USING PROPORTIONS

66 in = ____ ft
$$\frac{12 in}{1 ft} = \frac{66 in}{x ft}$$
$$12x = 66$$
So, 66 in. = 5.5 ft
$$x = 5.5$$

Remember: A proportion shows that two ratios are equivalent. Use a conversion factor for one of the ratios.


You Try:

1) 6 tons = _____ lbs.
2) 21 ft = ____ yds.
3) ____ cups = 28 fl. oz.
4) 3 mi = ____ ft.
5) 18 yds. = ____ in.
6) 6 pts = ____ gal


Customary Conversions Practice

Length	Capacity
1) 1 yard = feet	1) 1 pint = cups
2) 1 foot = inches	2) 1 gallon = quarts
3) 1 mile = feet	3) 1 quart = pints
Weight	4) 1 cup = fl. oz.
1) 1 ton = pounds	5) 1 gallon = cups
2) 1 pound = oz.	
1) 60 inches = feet	7) 4 tons = pounds
2) 5 yards = feet	8) 3 quarts = cups
3) 8 cups= pints	9) 4 cups = pints
4) 5 pounds = oz.	10) 3 gallons = qts.
5) 6 feet = inches	11) 8 cups = quart
6) 4 miles = feet	12) 31,680 ft = miles

Metric Practice Units of Measurement

Fill in each step with the appropriate unit.

Use a proportion to convert the following measurements.

 A large thermos holds about 1.5 liters. How many milliliters does it hold? 	 A computer screen is about 30.75 cm wide. How many millimeters wide is it?
$\frac{1.5L}{\Box mL} = \frac{1L}{1000mL}$	$\frac{30.75cm}{\Box mm} = \frac{1cm}{10mm}$
Answer:	Answer:

3) A beetle weighs about .68 grams. How many milligrams does it weigh? There are 1000 mg in one g	4) The distance from Dallas to Denver is 1260 km. What is this distance in meters? There are 1000 m in one km
Answer:	Answer:
5) 50cm = mm There are 10 mm in one cm	6) 3.16L = mL There are 1000 mL in one L
Answer:	Answer:

Compare, Write <, > or =.

7) 500 mm 5 0cm	8) 6.2 L 🖵 620 mL
There are 10 mm in one cm	There are 1000 mL in one L
9) 8.3 kg 🗖 8300 g	10) 2.6 m 26000 cm
There are 1000 g in one kg	There are 100 cm in one m

Customary and Metric Conversions	Converting between Customary & Metric Systems
1. 5000 g =kg (1 kg = 1000 g)	
	1. 16 inches = cm (1 in = 2.54 cm)
2. 64 oz = lbs (16 oz = 1 lb)	
	2. 5.2 gal = L (1 L = 0.26 gal)
3. 54 fl oz = cups (1 cup = 8 fl oz)	
	3. 54 fl oz = cups (8 fl oz = 1 cup)
4. 3 miles = ft (1 mile = 5,280 ft)	
	4) 3 lb = kg (1 lb = 0.45 kg)
5. A fence is 30 ft. How many yards long is the fence? (3 ft = 1 yd)	
	5) For each pair below, fill in >, <, or =.
	a. 14 oz 4 mg (3.5 oz = 1 mg)
 Griffin is making lemonade for his lacrosse team. He made 4.5 gal. How many cups of lemonade does he have? (1 gal = 16 cups) 	
	b. 6 m 18 ft (3.3 ft = 1 m)
7. Claire's dog weighs 25,700 grams. How many kilograms does the dog weigh? (1 kg = 1,000 g)	
	c. 38 L 5 gal (3.8 L = 1 gal)