Unit 2

Ratios, Rates and Proportional Reasoning

Ratios
Unit Rate
Proportions
Percents
Measurement Conversion

Name: \qquad
Math Teacher: \qquad

Unit 2 Pacing

Week of 10/11:

COMPUTER LAB DAY, Pre-Test, Ratios, Ratio Tables
Week of 10/18 (Conference Week):
Ratio Tables, Unit Rate, QUIZ

Week of 10/25:

MID-UNIT TEST, Solving Proportions, Proportions and Problem
Solving, COMPUTER LAB DAY

Week of 11/1:

Percent of a Number, Whole if Given Percent, Percent Problem Solving

Week 11/8:
COMPUTER LAB DAY, Review, POST TEST

IXL Login (https://www.ixl.com/signin/ecms)
USERNAME (student ID@ecms): \qquad
PASSWORD (student ID): \qquad
Other Login Information
SITE: \qquad
USERNAME: \qquad
PASSWORD: \qquad

Unit 2: Rate, Ratio and Proportional Reasoning Standards, Checklist and Concept Map
 Georgia Standards of Excellence (GSE):

MGSE6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was $2: 1$, because for every 2 wings there was 1 beak." "For every vote Candidate A received, Candidate C received nearly 3 votes."

MGSE6.RP.2: Understand the concept of a unit rate a / b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar."

MGSE6.RP.3b: Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, at that rate, how many lawns could be mowed in 35 hours?

MGSE6.RP. 3 : Use ratio and rate reasoning to solve real-world mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

MGSE6.RP.3a : Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

MGSE6.RP.3c : Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.
MGSE6.RP.3d : Use ratio and rate reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

What Will I Need to Learn??

\qquad I can understand ratios
I can understand unit rates
\qquad can solve unit rate problems
\qquad I can make tables of equivalent ratios, find missing values, and plot points in a coordinate plane; compare ratios in a table
\qquad equations
\qquad I can find percent of a number
can find the whole when given part and \%
\qquad I can convert Metric units
\qquad I can convert Customary units

Unit 2 Circle Map: On the left page, make a Circle Map of important vocab and topics from the standards listed above.

Unit 2 IXL Tracking Log

Skill	Your Score
R. 1 (Write a Ratio)	
R. 2 (Write a Ratio Using a Fraction)	
R. 3 (Write a Ratio: Word Problems)	
R. 4 (Which Model Represents the Ratio?)	
R. 5 (Identify Equivalent Ratios)	
R. 6 (Write an Equivalent Ratio)	
R. 7 (Ratio Tables)	
R. 9 (Unit Rates)	
R. 10 (Equivalent Rates)	
R. 15 (Ratios and Rates: Word Problems)	
R. 16 (Do the ratios form a proportion?)	
R. 17 (Solve the Proportion)	
R. 22 (Scale Drawings: Word Problems)	
S. 1 (What Percent is Illustrated?)	
S. 4 (Convert Between Percents, Fractions and Decimals)	
S. 6 (Compare Percents to Each Other and to Fractions)	
S. 8 (Find what percent one number is of another)	
S. 10 (Percents of Numbers and Money Amounts)	
S. 13 (Find What Percent One Number is of Another - Word Problems)	
S. 15 (Find the Total Give a Part and a Percent)	
S. 16 (Solve Percent Problems)	
S. 17 (Solve Percent Word Problems)	
T. 3 (Convert and Compare Customary Units)	
T. 7 (Convert and Compare Metric Units)	
T. 8 (Convert Customary and Metric Units Using Proportions)	

Unit 2 - Vocabulary

Term	Definition
Customary System	The primary system of measurement used in the US, which uses a variety of conversions
Double Number Line Diagram	A visual model used to solve unit rate problems and proportions
Metric System	The system of measurement that uses a base- 10 model; used by most countries
Percent	Number out of loo
An equation of equivalent ratios	

Unit 2 - Vocabulary - You Try

Term	Definition	Illustration or Example
Customary System		
Double Number Line Diagram		
Metric System		
Percent		
Proportion		
Rate		
Ratio		
Unit Rate		

Math 6 - Unit 2: Rates, Ratios \& Proportional Reasoning Review

Knowledge and Understanding

1. What is a ratio? \qquad
2. What is a rate? \qquad
3. What is a unit rate? \qquad
4. What is a percent? \qquad

Proficiency of Skills

5. Fill in the ratio table:

9	18			45
12		36	48	

6. 80 is 25% of what number? \qquad
7. Find 30% of 70 . \qquad
8. Find the value of $x \cdot \frac{15}{25}=\frac{x}{30}$
9. Write the ratio as a unit rate: $\$ 27$ for 9 tickets. \qquad

Application

10. Jaden drove 260 miles in 4 hours. Jada drove 210 miles in 3 hours. Who drove at the fastest rate of speed? How do you know?
a. Who drove the fastest? \qquad
b. How do you know? \qquad _
\qquad
\qquad
11. PBIS Middle School held a car wash as a fundraiser. Out of the 50 vehicles that were washed, 15 were trucks. What percent were trucks?
12. The graph below compares cups to pints. Which of the following ordered pairs would also satisfy this relationship?

A. $(1,2)$
B. $(2,4)$
C. $(2,0)$
D. $(4,2)$
13. Michael's paycheck last week was $\$ 146.50$. He would like to put 20% of his earnings in his savings account. How much money should he put in his savings account?
a. \$5.0
b. $\$ 15.2$
c. \$29.3
2
0
d. $\$ 88.2$
2
14. The prices of 4 different bottles of lotion are given in the table. Which size bottle is the BEST value?

Size	Price
25 ounces	$\$ 4.50$
15 ounces	$\$ 1.80$

A. The $25-\mathrm{oz}$ bottle
B. The $15-\mathrm{oz}$ bottle
C. They both have the same unit price
D. Neither
18. Driving at a constant speed, Daisy drove 240 miles in 6 hours. How far would she drive in 1 hour? 15 hours?
19. Chompers is 76 cm long. How many mm is this?
a. .76 mm
b. 7.6 mm
c. 760 mm
$7,600 \mathrm{~mm}$

Ratios

A RATIO is a comparison of two quantities by division.

The ratio of two red paper clips to six blue paperclips can be written in the following ways:

2 to 6 2:6
 $\frac{2}{6}$

Just like fractions, we usually represent a ratio in simplest form.

ORDER MATTERS!

Example:

Several students named their favorite flavor of gum. Write the ratio that compares the number of students who chose fruit to the total number of students.

Favorite Flavors of Gum	
Flavor	\# of Responses
Peppermint	9
Cinnamon	8
Fruit	3
Spearmint	1

Fruit: 3
Total: $9+8+3+1$, or 21
fruit flavor responses $\cdots \rightarrow \frac{3}{21}$
total responses $\cdots \rightarrow \frac{1}{21}<\cdots$
$\vdots \div 3$
The ratio is $\frac{1}{7}, 1$ to 7 , or $1: 7$.
So, 1 out of every 7 students preferred fruit-flavored gum.

You Try:

Use the stars to answer questions 1 and 2.

1) Write the ratio of black stars to white stars in three different ways.
2) Write the ratio of white stars to black stars in three different ways.

Use the table below to answer questions 3-6.

Favorite Pets	
Snake	15
Dog	10
Cat	6
Hamster	8
Fish	1

3) What is the ratio of people who chose snakes as their favorite pet to those who chose dogs?
4) What is the ratio of people who chose cats AND dogs to those who chose hamsters?
5) What is the ratio of those who chose snakes as their favorite pet to everyone that was surveyed?
6) What is the ratio of those who chose cats to those who chose fish?

Use the words, "East Cobb Middle School" to answer questions 7-11.
7) What is the ratio of vowels to consonants?
8) What is the ratio of letters in ECMS to East Cobb Middle School?
9) What is the ratio of the letters in "East Cobb" to the letters in "Middle School"?
10) What is the ratio of the letters in "Middle School" to the letters in "East Cobb"?
11) Crain says the ratio of letters in "East" to "Cobb" is $4: 4$. Hailey says that ratio is 1:1. Who is correct? Explain your answer.

The table below shows the number of balloons purchased in each color at Party City. Using this information, answer questions 12-15.

Color	Red	Yellow	Blue	Green
Quantity Sold	10	20	15	25

12) Which two items does the ratio 10:20 represent?
13) Which two items does the ratio $3: 5$ represent?
14) Which two items does the ratio 5 to 3 represent?
15) Which two items does the ratio $\frac{3}{2}$ represent?
16) Which two items does the ratio $4: 3$ represent?

Different Types of Ratios

Part to Whole ratios are ratios that relate one part of a whole to another part of a whole.

Example:

There are 4 boys for every 6 girls. The ratio of boys (a part of the group of kids) to girls (another part of the group of kids) is $4: 6$ (simplified to 2:3).

You Try:

Boys:
Girls:

\qquad8 8 0 8

The ratio of boys to girls is: \qquad to \qquad
The ratio of girls to boys is: \qquad : \qquad

Part to Part ratios are ratios that relate one part of the whole to the whole.

Example:

There are 4 boys (a part of the group of children) for every 10 children (the whole group of children), written as $4: 10$ (simplified to $2: 5$). On the other hand, 6 girls for every 10 children is written as 6:10 (simplified to 3:5).

You Try:

Boys:
Girls:

8
8
8

8

The ratio of boys to children is: \qquad to \qquad
The ratio of girls to children is: \qquad : \qquad

More Practice with Ratios

Use the table to answer the following questions.

Favorite Snacks of the $\mathbf{6}^{\text {th }}$ Graders	
Ice Cream	12
Takis	6
Candy	9
Fruit	4
Sunflower Seeds	2
Seaweed	5
Cookies	7

Find the following ratios. Don't forget to simplify if necessary.

1) candy to seaweed \qquad to \qquad
2) sunflower seeds to cookies \qquad to \qquad
3) Takis to ice cream \qquad to \qquad
4) candy to cookies and fruit \qquad to \qquad
5) cookies to Takis \qquad to \qquad
6) fruit to candy \qquad to \qquad
7) Takis and fruit to seaweed \qquad to \qquad
8) ice cream to sunflower seeds \qquad to \qquad
9) candy to total \qquad to \qquad
10) cookies and ice cream to total \qquad to \qquad

Ratio Tables

A RATIO TABLE is a table of values that displays equivalent ratios.

Example:

Soda	1	2	3
Juice	3	6	9

The ratios $\frac{1}{3}, \frac{2}{6}$, and $\frac{3}{9}$ are equivalent, since each simplifies to a ratio of $\frac{1}{3}$.

Equivalent ratios express the same relationship between quantities. In the example above, for every 1 soda, there are 3 juices.

Examples:

1) To make yellow icing, you mix 6 drops of yellow food coloring with 1 cup of white icing. How much yellow food coloring should you mix with 5 cups of white icing to get the same shade?
Use a ratio table. Since $1 \times 5=5$, multiply each quantity by 5 .

So, add 30 drops of yellow food coloring to 5 cups of icing.

2) In a recent year, Joey Chestnut won a hot dog eating contest by eating nearly 66 hot dogs in 12 minutes. If he ate at a constant rate, determine about how many hot dogs he ate every two minutes.
Divide each quantity by one or more common factors until you reach a quantity of 2 minutes.
So, Chestnut ate about 11 hot dogs every 2 minutes.

More Practice with Ratio Tables

Find the missing values to complete the ratio tables.
1)

2		6	10
4	8		

2)

		3	
7	14	21	28

3)

8	16		48
5	10	25	30

4)

2	6	8	10
5			

5)

3	9	21	27
			36

6)

4		12	16
6	12		

7)

11		33	44
15	30		

8)

5		15	
12	24		48

More Practice with Ratio Tables
Find the missing values to complete the ratio tables.
9)

1	2	3	4
2			

10)

2	4	6	8
3			

11)

1		3	6
7	14		

12)

13)

10		30	40
15	30		

14)

3		9	
12	24		48

15)

8	16	24	32
			36

16)

15		45	60
16	32		

Unit Rates

A rate is a ratio comparing two quanities of different kinds of units. A unit rate has a denominator of 1 unit when the rate is written as a fraction. To write a rate as a unit rate, divide the numerator and the denominator of the rate by the denominator.
Ratio \quad Rate
$15: 5=\frac{15 \text { characters }}{5 \text { seconds }}=\frac{\text { Unit Rate }}{1 \text { second }}$

Examples:

Samantha picked 45 oranges in 5 minutes. Write this rate as a unit rate. sm
Write the rate as a fraction.
Compare the number of oranges to the number of minutes.
Then divide.

So, the unit rate is $\frac{9 \text { oranges }}{1 \text { minute }}$, or 9 oranges per minute.

The Australían dragonfly can travel $\mathbf{1 8}$ miles in $\mathbf{3 0}$ minutes. How far can the dragonfly travel in 1 minute?

Write the rate as a fraction.
Compare the distance to the number of minutes. Then divide.

The ratio 3 to 5 cannot be simplified to a whole number rate. It can be written as $\frac{3 \text { miles }}{5 \text { minutes }}$ or as a unit rate of $\frac{3}{5}$ mile to 1 minute.
The dragonfly can travel $\frac{3}{5}$ mile every minute.

Unit Rates Practice

Equivalent Ratios and Unit Rate

You can find a unit rate by setting up an equation of equivalent ratios. This equation is called a proportion.

Example:

1) There are 21 water bottles to 7 forks. Find the unit rate for 1 fork.
First, set up a proportion: $\frac{\text { Water Bottles }}{\text { Forks }}=\frac{21 \div 7}{7}=\frac{\square}{1}$
You can look at the relationship that is created for the forks. The 7 was divided by 7 to make 1 . Then apply that same relationship to the top. 21 divided by 7 is 3 .

So, there are 3 water bottles for every 1 fork.

You Try:

1) Megan paid $\$ 12.00$ for 3 lip gloss flavors. What is the unit rate?
2) Erin paid $\$ 12.00$ for 5 lip gloss flavors. What is the unit rate?

Equivalent Ratios

You can find equivalent ratios in two different ways, using a table or a graph.

Tables

1) Fill in the information already given to you.
2) Find the pattern by writing the numbers as a fraction.
3) Fill in the rest of the table based on the pattern. (Multiply the top and bottom number by a common factor.)

Example:

1) Find the missing value by finding equivalent ratios.

Green Beads	2	4	6	8	10
Blue Beads	5	10	15	20	2

$$
\frac{2}{5}=\frac{4}{10}=\frac{6}{15}=\frac{9}{20}=\frac{10}{?}
$$

Since the pattern shows that we are multiplying the numerator and denominator of our original fraction by the same factor, you can see that we multiplied 2 times 5 to get 10 . That means we will multiply 5 by 5 , so the ? must be equal to 25 .

You Try:

1) Find the missing value by finding equivalent ratios.

Green Beads	2	4	6	8	10
Blue Beads	5	10	15	20	$?$

$\frac{2}{5}=\frac{4}{10}=\frac{6}{15}=\frac{9}{20}=\frac{10}{?} \quad ?=$ \qquad

Graphs

1) Plot the points that are already given to you.
2) Draw a line to connect the points.
3) Plot the rest of the points based on the pattern you see.

Example:

1) To make rice, you need 1 cups of rice and 2 cups of water. Use the graph below to find out how many cups of water you would need to make 3 cups of rice.

Ordered Pairs:
(1, 2)
$(2,4)$
(3) \qquad
What pattern do you see? As you increase the rice by 1 cups, you must increase the water by 2 cups.

You Try

1) Every 3 days, students in a fitness class run 2 miles. Use the graph below to determine how many miles they run in total over 9 days.

Ordered Pairs:
(3, 2)
(
(

)
What pattern do you see?

They would run \qquad miles total in 9 days.
2) Use either method you have learned to answer the following question: There are 3 people in each row of seats on an airplane. How many people can be seated in 4 rows?

Using the graph above, can you tell how many cups of water you would need for 5 cups of rice?

Proportions

A PROPORTION is an equation that relates two equivalent ratios. Ratios are said to be in proportion if they can both be reduced to the same ratio.

$$
\frac{1}{2}=\frac{5}{10}
$$

$$
\frac{1}{2}=\frac{5}{8}
$$

This is a proportion. This is NOT a proportion
You can check to see if two ratios are in proportion by crossmultiplying. The cross-products must be equal.

Example:

State whether the ratios are proportional. If they aren't proportional, change one of the numbers to make them proportional. Circle $=$ or \neq.

1) $\frac{6}{10}=\neq \frac{3}{5} \quad \frac{6}{10} \Theta \neq \frac{3}{5}$ They are in proportion.

You Try:

1) $\frac{4}{5}=\neq \frac{12}{15}$
2) $\frac{8}{12}=\neq \frac{2}{3}$
3) $\frac{7}{8}=\neq \frac{8}{9}$
4) $\frac{4}{5}=\neq \frac{7}{8}$
5) $\frac{4}{12}=\neq \frac{5}{15}$
6) $\frac{1}{3}=\neq \frac{1}{6}$

Solving Proportions

One way to solve proportions is to cross multiply and see what factor you need to make the cross-products equal.

Example:

Another way that you can solve a proportion is to find the factor that is shared across the numerator or denominator and use that same relationship to complete the proportion.

Example:

You Try:

Finding the missing number in the proportion:

1) $\frac{r}{15}=\frac{4}{20}$
2) $\frac{8}{10}=\frac{20}{y}$
3) $\frac{x}{30}=\frac{3}{4}$
4) $\frac{2,5}{5}=\frac{j}{4}$
5) $\frac{12}{a}=\frac{21}{7}$
6) $\frac{k}{3}=\frac{14}{21}$

You can set up proportions to solve word problems as well.

Example:

1) Jazmine won a pie-eating contest, eating 6 pies in 10 minutes. At that rate, how many pies can she eat in two hours?

There are 120 minutes in two hours. So, $\frac{6}{10}=\frac{p}{120}$. Since 10 times 12 equals 120,6 times 12 is 72 . She would eat 72 pies in two hours.

You Try:

1) Matthew hiked 10 miles in 4 hours. At that rate, how far can he hike in 18 hours?
2) A recipe calls for 2.5 cups of sugar to make 12 cookies. How much sugar is needed to make 36 cookies?
3) If 16 necklaces can be bought for $\$ 40$, how much will 12 necklaces cost?
4) Sebastian can correctly solve 120 multiplication problems in 2 minutes. At this rate, how long would it take him to solve 300 problems?
5) Alexandra types at a speed of 45 words per minute. How many words can she type in 10 minutes?
6) Daisy needs 1.5 cups of sugar to make 12 cupcakes. How much sugar does she need to make 48 cupcakes?

Finding the "Percent of" a Number

Percent means out of 100 .

In math "of" means multiply.
To find the "percent of" a number:

1) Change the percent to a decimal and then multiply.
2) OR Turn the percent into a fraction and then multiply.
100% means 1 whole. Therefore 100% of 85 is 85 . That's just like changing 100% to its equivalent decimal, 1, and multiplying by 85. If you have less than 100% of a number, the solution is less than the original number.

Example:

Find 75% of 36 .

OPTION 1 (Change the percent to a decimal) .75	OPTION 2 (Change the percent to a fraction) $\frac{\times 36}{450}$ $\frac{2250}{27.00}$
Therefore, 75% of 36 is 27.	

TIP: Always, always, always check your answer to see if it is reasonable. (Does it make sense?) 75% is less than 100% so 27 should be less than 36.75% is greater than 50% so 27 should be greater than half of 36 , which is 18 . If those things are true, you are probably on the right track!

You Try:

For each problem below, circle the ONLY reasonable answer based on what you know.

Problem	Circle the ONLY reasonable answer			
90% of 40	9	36	17	57
25% of 72	18	54	2.5	70
50% of 1600	56	16	1650	800
110% of 55	1.5	115	60.5	25
5% of 80	58	4	804	85

Find the "percent of" for each of the problems below.

1) 50% of 12
2) 20% of 45
3) 15% of 100
4) 5% of 40
5) 150% of 92
6) 25% of 90
7) "Arachibutyrophobia" is the fear of peanut butter getting stuck to the roof of your mouth. In a survey of 150 people, 2% of them have arachibutyrophobia. How many people surveyed have this fear?
8) When making peanut butter and jelly sandwiches, 20% of people put the peanut butter on first. Out of 75 people, how many people would NOT put peanut butter on first?
9) At ECMS, about 25% of the $6^{\text {th }}$ graders made an A in math. If there are $4166^{\text {th }}$ graders, how many made an A ?
10) Last year, ECMS had 1280 students. If we have 110% of that amount this year, how many students are at ECMS this year?

Finding the "Whole" when Given the
 Percent

Example:

There are 14 candies in a bag that is 20% full. How many candies are in a full bag?

USE A TAPE DIAGRAM

Whole: Unknown (\# of candies in full bag) Part: 14 candies
Percent: 20\%

If there are 14 candies in 20%, then there are 14 candies in each of the other 20% sections of the diagram. The total number of candies in the bag is the sum of all the quantities: $14+14+14+14+14=70$ or $14(5)=70$.

14	14	14	14	14

Thus, there are 70 candies in a full bag.

USE A TABLE

There are 14 candies in a bag that is 20% full. How many candies are in a full bag?

Percentage	0%	20%	40%	60%	80%	100%
Part	0	14	28	42	56	70

You Try:

Use a table to solve the percent problems below.

1) 16 is 80% of what number?

Percentage		16	
Part	20%	80%	100%

2) Peyton made a 90% on her math test. If she got 27 questions correct, how many total questions were on the test?

Percentage			
Part			

3) 64% of the students in a classroom are girls. If there are 16 girls, how many total students are in the class?

Percentage			
Part			

The Percent Proportion

You can use a percent proportion to solve for any one piece when given the other 3 .

Example:

$$
\begin{aligned}
& \text { Finding a percent (part) of a } \\
& \text { number (whole): } \\
& \text { What is } 20 \% \text { of } 240 \text { ? } \\
& \text { First, set up your proportion: } \\
& \qquad \begin{array}{l}
\frac{x}{240}=\frac{20}{100} \\
\text { Then solve by cross } \\
\text { multiplying: } \\
\qquad \begin{array}{r}
x+140 \\
x \\
100 \\
\qquad 100 \\
x
\end{array} \\
x=\frac{4800}{100} \\
x=48
\end{array}
\end{aligned}
$$

48 is 20% of 240 .

Finding the whole given the percent (part):

60 is 75% of what number? First, set up your proportion:

$$
\frac{60}{x}=\frac{75}{100}
$$

Then solve by cross multiplying:
$60 \cdot 100=x \cdot 75$
$6000=x \cdot 75$
$x=\frac{6000}{75}$
$x=80$

60 is 75% of 80 .

You Try:

Use one of the methods you have learned to solve the following problems.

1) What is 5% of 200 ?
2) 8 is 40% of what number?
3) What is 15% of 80 ?
4) What is 25% of 60 ?
5) 18 is 25% of what number?
6) 62 is 50% of what number?

Problem Solving with Percents

1) Martha put 20% of her paycheck in the bank. If her paycheck was $\$ 150$, how much did she put in the bank?
a) Should your answer be MORE or LESS than \$150?
b) Solution = \qquad
c) Write your answer in a complete sentence:
2) Ethan got 90% of the problems correct on a quiz. If he got 27 problems correct, how many problems were on the quiz?
a) Should your answer be MORE or LESS than 27?
b) Solution = \qquad
c) Write your answer in a complete sentence:
3) Whitney bought a pair of jeans that cost $\$ 25$. If tax is 5%, how much tax will she pay?
a) Should your answer be MORE or LESS than $\$ 25$?
b) Solution $=$ \qquad
c) Write your answer in a complete sentence:
4) Ellis' bill at Red Lobster was $\$ 18.50$. If he gives his server a 20% tip, how much tip will he leave?
a) Should your answer be MORE or LESS than $\$ 18.50$?
b) Solution = \qquad
c) Write your answer in a complete sentence:

Tips, Taxes and Discounts
Tips: If my bill is $\$ 25$, how much should I tip and what is my total?
EQ: What is 20% of $\$ 25$?
Step 1: Find key words!
Step 2: Change all percents to decimals or fractions!
Step 3: Substitute key words in your question:

$$
\text { What is } 20 \% \text { of } \$ 25 \text { means }
$$

$$
y=.20 \cdot 25 \underline{O R} y=1 / 5 \cdot 25
$$

Y (tip) $=\$ 5$
Step 4: Add your tip to your total!
$\$ 25+\$ 5$ tip $=\$ 30$ total

BTW: You thank your server by giving him a tipl This tip will be...

Added Subtracted

 ... to your bill.BTW: Anytime we buy something, we pay sales tax to the government. Thus, tax is...
Added Subtracted ... to your total.

Taxes: A shirt costs $\$ 25$. If taxes are 5%, what will my total be?
EQ: What is 5% of $\$ 25$?
Step 1: Find key words to tell you what to do!
Step 2: Change all percents into decimals or fractions!
Step 3: Substitute key words into your essential question:
$Y=.05 \cdot \$ 25 \underline{O R} \quad y=5 / 100 \cdot 25$
$Y($ tax) $=\$ 1.25$
Step 4: Add your tax to your total!
$\$ 25+\$ 1.25=\$ 26.25$

Discounts: If a $\$ 32$ sweater is 25% off, what is the sale price?

EQ: What is 25% of $\$ 32$?
Step 1: Find key words to tell you what to do!
Step 2: Change all percents into decimals or fractions!

Step 3: Substitute key words into your essential question:
$Y=.25 \cdot 32 \underline{O R} Y=25 / 100 \cdot 32$
Y (discount) $=\$ 8$
Step 4: Subtract your discount from your original price!
$\$ 32-\$ 8=\$ 24$

BTW: When something is on sale, the discounted amount is...

Added Subtracted ... from the original price.

Choose the APPROPRIATE measurement. In METRIC UNITS, what would you use to measure...
a) distance to the moon \qquad
b) weight of a person \qquad
c) the capacity of soup on a spoon \qquad
d) the length of your textbook \qquad
e) the weight of a Post-lt note \qquad
In CUSTOMARY UNITS, what would you use to measure..
a) the weight of an elephant

b) water in a swimming pool \qquad
c) the width of your eye \qquad
d) the distance across the hall \qquad
the weight of a flea \qquad

Converting Customary (Standard) Units of Measurement

Common Customary Measurements		
Length	Weight	Capacity
1 foot $=12$ inch	1 pound $=16$ ounces	1 cup $=8$ fluid ounces
1 yard $=36$ inches	1 ton $=2,000$ pounds	1 pint $=2$ cups
1 yard $=3$ feet		1 quart $=2$ pints
1 mile $=5,280$ feet		1 quart $=4$ cups
1 mile $=1,760$ yards		1 gallon $=4$ quarts
		1 gallon $=16$ cups
		1 gallon $=128$ fluid ounces

You can use ratios and proportions to calculate measurement conversions quickly.
Example:

Pg.20a

Customary Practice

Length	Capacity
1) 1 yard = ___ feet	1) 1 pint = ___ cups
2) 1 foot $=$ \qquad inches	2) 1 gallon $=$ \qquad quarts
3) 1 mile = \qquad feet	3) 1 quart = \qquad pints
Weight	4) $1 \mathrm{cup}=$ \qquad fl. oz.
1) 1 ton = _ pounds	5) 1 gallon = __ cups
2) 1 pound = _ oz.	
1) 60 inches = ___ feet	6) 4 miles = ___ feet
2) 5 yards $=$ \qquad feet	7) 4 tons = __ pounds
3) 8 cups= \qquad pints	8) 3 quarts $=$ \qquad cups
4) 5 pounds $=$ \qquad oz.	9) 4 pints $=$ \qquad cups
5) 6 feet $=\ldots$ ___ inches	10) 3 gallons =___ ats

Metric Practice

Use a proportion to convert the following measurements.

1) A large thermos holds about 1.5 liters. How many milliliters does it hold? $\frac{1.5 L}{\square m L}=\frac{1 L}{1000 m L}$ Answer:	2) A computer screen is about 30.75 cm wide. How many millimeters wide is it? $\frac{30.75 \mathrm{~cm}}{\square \mathrm{~mm}}=\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}$ Answer:
3) A beetle weighs about .68 grams. How many milligrams does it weigh? There are 1000 mg in one g Answer:	4) The distance from Dallas to Denver is 1260 km . What is this distance in meters? There are 1000 m in one km Answer:
5) $50 \mathrm{~cm}=$ \qquad mm There are 10 mm in one cm Answer:	6) $3.16 \mathrm{~L}=$ \qquad mL There are 1000 mL in one L Answer:

Compare, Write <, > or =.

7) 500 mm \square 50 cm There are 10 mm in one cm	8) $6.2 \mathrm{~L} \square 620 \mathrm{~mL}$ There are 1000 mL in one L
9) $8.3 \mathrm{~kg} \square 8300 \mathrm{~g}$ There are 1000 g in one kg	10) $2.6 \mathrm{~m} \square 26000 \mathrm{~cm}$ There are 100 cm in one m

