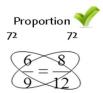
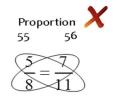
Proportions

is an equation that relates two equivalent ratios. Ratios are said to be in proportion if they can both be reduced to the same ratio.


$$\frac{1}{2} = \frac{5}{10} \qquad \qquad \frac{1}{2} = \frac{5}{8}$$


$$\frac{1}{2} = \frac{5}{8}$$

This is a proportion.

This is **NOT** a proportion

You can check to see if two ratios are in proportion by crossmultiplying. The cross-products must be equal.

Example:

State whether the ratios are proportional. If they aren't proportional, change one of the numbers to make them proportional. Circle = $or \neq .$

1)
$$\frac{6}{10} = \neq \frac{3}{5}$$

1)
$$\frac{6}{10} = \neq \frac{3}{5}$$
 $\frac{6}{10} \neq \frac{3}{5}$ They are in proportion.

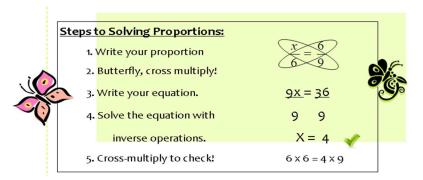
You Try:

1)
$$\frac{4}{5} = \neq \frac{12}{15}$$
 2) $\frac{8}{12} = \neq \frac{2}{3}$ 3) $\frac{7}{8} = \neq \frac{8}{9}$

2)
$$\frac{8}{12} = \neq \frac{2}{3}$$

3)
$$\frac{7}{8} = \neq \frac{8}{9}$$

4)
$$\frac{4}{5} = \neq \frac{7}{8}$$


4)
$$\frac{4}{5} = \neq \frac{7}{8}$$
 5) $\frac{4}{12} = \neq \frac{5}{15}$ 6) $\frac{1}{3} = \neq \frac{1}{6}$

6)
$$\frac{1}{3} = \neq \frac{1}{6}$$

Solving Proportions

One way to solve proportions is to cross multiply and see what factor you need to make the cross-products equal.

Example:

Another way that you can solve a proportion is to find the factor that is shared across the numerator or denominator and use that same relationship to complete the proportion.

Example:

1)
$$\frac{4}{36} = \frac{u}{9}$$

$$\frac{4}{36} = \frac{u}{9}$$

$$\div 4$$

$$u = 1$$

2)
$$\frac{u}{36} = \frac{1}{9}$$

$$u = 4$$

You Try:

Finding the missing number in the proportion:

1)
$$\frac{r}{15} = \frac{4}{20}$$
 r = 3

1)
$$\frac{r}{15} = \frac{4}{20}$$
 r = 3 2) $\frac{8}{10} = \frac{20}{v}$ y = 25 3) $\frac{x}{30} = \frac{3}{4}$

3)
$$\frac{x}{30} = \frac{3}{4}$$

$$x = 22.5$$

4)
$$\frac{2.5}{5} = \frac{j}{4}$$
 j = 2

5)
$$\frac{12}{a} = \frac{21}{7}$$
 a = 4

4)
$$\frac{2.5}{5} = \frac{j}{4}$$
 j = 2 5) $\frac{12}{a} = \frac{21}{7}$ a = 4 6) $\frac{k}{3} = \frac{14}{21}$ k = 2

You can set up proportions to solve word problems as well.

Example:

 Jazmine won a pie-eating contest, eating 6 pies in 10 minutes. At that rate, how many pies can she eat in two hours?

There are 120 minutes in two hours. So, $\frac{6}{10} = \frac{p}{120}$. Since 10 times 12 equals 120, 6 times 12 is 72. She would eat 72 pies in two hours.

You Try:

1) Matthew hiked 10 miles in 4 hours. At that rate, how far can he hike in 18 hours? **45 miles**

2) A recipe calls for 2.5 cups of sugar to make 12 cookies. How much sugar is needed to make 36 cookies? **7.5 cups**

3) If 16 necklaces can be bought for \$40, how much will 12 necklaces cost? \$30

4) Sebastian can correctly solve 120 multiplication problems in 2 minutes. At this rate, how long would it take him to solve 300 problems? **5 minutes**

5) Alexandra types at a speed of 45 words per minute. How many words can she type in 10 minutes? **450 words**

6) Daisy needs 1.5 cups of sugar to make 12 cupcakes. How much sugar does she need to make 48 cupcakes? 6 cups