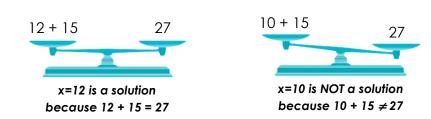
Solutions to Equations

Solutions to equations are values for the variables that make the **two sides equal**.

Think of a correct equation as a balanced scale.



If an equation has a variable you can check to see if a number is a solution to an equation by substituting the number in for the variable. If you get the same number on both sides, you have found a solution to the equation.

Example: EQUATION: x + 15 = 27

Is x=12 a solution?

Is x=10 a solution?

You Try:

- 1) Is x = 3 a solution to the equation, x + 5 = 10?
- 2) Is y = 5 a solution to the equation, $\frac{30}{y} = 6$?
- 3) Is z = 12 a solution to the equation, 8z = 95?

You Try:

Determine if the following value for the variable is a solution to the equation. Write yes or no.

1)
$$9 + x = 21$$
, for $x = 11$

2)
$$n-12=5$$
, for $n=17$

3)
$$25r = 75$$
, $for r = 3$

4)
$$72 \div q = 8$$
, for $q = 9$

5)
$$28 + c = 43$$
, for $c = 15$

6)
$$u \div 11 = 10$$
, for $u = 111$

7)
$$\frac{k}{8} = 4$$
, for $k = 24$

8)
$$16x = 48$$
, $for x = 3$

9)
$$73 - f = 29$$
, $for f = 54$

10)
$$67 - j = 25$$
, $for j = 42$

11)
$$39 \div v = 13$$
, for $v = 3$

12)
$$88 + d = 100$$
, for $d = 2$

13)
$$14p = 20$$
, for $p = 5$

14)
$$6w = 30$$
, $for w = 5$

15)
$$7 + x = 70$$
, for $x = 10$

16)
$$6n = 174$$
, $for n = 29$

Replace each \diamondsuit with a number that makes the equation correct.

17)
$$5 + 1 = 2 + \diamondsuit$$

18)
$$10 - \diamondsuit = 12 - 7$$

19)
$$\diamond \cdot 3 = 2 \cdot 9$$

20)
$$28 \div 4 = 14 \div \diamondsuit$$

21)
$$\diamondsuit + 8 = 6 + 3$$

- 23) Carla had \$15. After she bought lunch, she had \$8 left. Write an equation using the variable, x, to model this situation. What does your variable represent?
- 24) Seventy-two people signed up for the soccer league. After the players were evenly divided into teams, there were 6 teams in the league. Write an equation to model this situation using the variable, x.