Lesson 6.6 Surface Area: Rectangular Solids

The **surface area** of a solid is the sum of the areas of all surfaces of the solid. A rectangular solid has 6 surfaces.

The area of each surface is determined by finding:

$$length \times width$$
, $length \times height$, $width \times height$

The total surface area is found using this formula:

$$SA = 2\ell w + 2\ell h + 2wh$$

If $\ell=10$ m, w=6 m, and h=4 m, the surface area is found as follows:

$$SA = 2(10 \times 6) + 2(10 \times 4) + 2(6 \times 4)$$

$$SA = 2(60) + 2(40) + 2(24) = 120 + 80 + 48 = 248 \text{ m}^2$$

Find the surface area of each rectangular solid.

١.

a

$$SA = \underline{\qquad} cm^2$$

b

C

$$SA = mm^2$$

2.

$$SA =$$
_____ft.²

$$SA = \underline{\qquad}$$
 in.²

Lesson 6.7 Surface Area: Pyramids

The **surface area** of a solid is the sum of the areas of all surfaces of the solid. The surface area of a square pyramid is the sum of the area of the square base and each of the 4 triangular sides.

Each triangle's area is $\frac{1}{2}$ base \times height. In a pyramid, **base** refers to the side length and **height** refers to the slant height, or length. So surface area or $SA = (\text{side} \times \text{side}) + 4(\frac{1}{2} \text{ side} \times \text{length})$.

$$SA = s^2 + 2s\ell$$
 SA is given in square units, or units².

slant height, or $\textit{length}\ (\ell)$ of the side

If s = 6 cm and $\ell = 10$ cm, what is the surface area?

$$SA = s^2 + 2s\ell$$

$$SA = 6^2 + 2 \times 6 \times 10 = 36 + 120 = 156 \text{ cm}^2$$

Find the surface area of each square pyramid.

١.

a

$$s = 8 \text{ in.}$$

$$SA = \underline{\qquad}$$
 in.²

b

$$SA = \underline{\qquad} cm^2$$

C

$$SA = m$$

2.

$$SA = \underline{\hspace{1cm}} ft.^2$$

$$SA = \underline{\qquad} cm^2$$

$$SA = \underline{\hspace{1cm}} in.^2$$