Unit 8

Operations with Rational Numbers

Adding Rational Numbers

Subtracting Rational Numbers
Multiplying/Dividing Rational Numbers
Converting Fractions \& Decimals

Name: \qquad _
\qquad
Math Teacher: -

Math 6/7
 Unit 8 Calendar

2/10	2/11	2/12	2/13	2/14
Unit 8 Pre-test Coin Counters Addition Intro	Computer Lab	Adding Rational Numbers	Adding Rational Numbers	Adding Rational Numbers \& Quiz
IXL Skills Week of 2/25: N1, N2, N7				
2/17	2/18	2/19	2/20	2/21
(2) Winter Break! (2)				
2/24	2/25	2/26	2/27	2/28
Subtracting Rational Numbers	Computer Lab	Subtracting Rational Numbers	Subtracting Rational Numbers	Subtracting Rational Numbers \& Quiz
IXL Skills Week of 3/4: N3, N4, N5, N6, P5				
3/2	3/3	3/4	3/5	3/6
Multiplying \& Dividing Rational Numbers	Computer Lab	Review	Review	Unit 8 Test
IXL Skills Week of 3/11: N8, N9, N10, N11, P6				

Unit 8: Operations with Rational Numbers Standards, Checklist and Circle Map

Georgia Standards of Excellence (GSE):

MGSET.NS.1a: Describe situations in which opposite quantities combine to make 0 . MGSE7.NS.1b: Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

MGSET.NS.1c: Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
MGSE7.NS.1d: Apply properties of operations as strategies to add and subtract rational numbers.
MGSET.NS.2a: Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
MGSET.NS.2b: Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-$ $p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts

MGSE7.NS.2c: Apply properties of operations as strategies to multiply and divide rational numbers.
MGSET.NS.2d: Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.
MGSET.NS.3: Solve real-world mathematical problems involving the four operations with rational numbers.

What Will I Need to Learn?? Mark a check next to each concept as you master them.
\qquad I can show integer addition and subtraction on a number line
\qquad I can understand that the sum of opposites is zero
\qquad I can add and subtract integers, including in real-life situations
\qquad I understand that subtracting is the same as adding the inverse
\qquad I can multiply integers
\qquad I can divide integers
 I can convert fractions (rational numbers) to decimals
\qquad I can solve problems with rational numbers

Vocabulary Term	What does it mean? Definition	What does it look like? Picture/Example
Repeating decimal	A decimal that repeats the same digits infinitely	
Terminating decimal	A decimal that stops at a certain place value	
Positive number	A number greater than zero	
Negative number	A number less than zero	
Zero Pair	A pair of numbers whose sum is zero	
Natural numbers	"Counting numbers" from one to infinity	
Whole numbers	"Counting numbers" from zero to infinity (all natural numbers and zero)	
Integers	Whole numbers and their opposites	
Rational numbers	A real number that can be written as an integer, a fraction, or a repeating or terminating decimal	

Unit 8 End of Unit Study Guide

Knowledge and Understanding

1) What is the algorithm for adding with negative numbers?
2) a) What is the sum of two numbers that are the same distance from zero on the number line?
b) What are they called?
3) Model the problem -6-2 using + and - counters:

Proficiency of Skills

4) $10-(-7)=$ \qquad
5) $(2)(12)(-5)=$
6) $(-150) \div(-15)=$ \qquad 7) $(8.1)+(-1)+(-7.1)=$ \qquad
7) $(-1.3)-(-4.3)=$ \qquad 9) $(-5)(2-8)=$
8) Convert $\frac{2}{9}$ to a decimal: \qquad
9) Convert 1.08 to a fraction: \qquad

Application

12) Order from least to greatest: $-\frac{1}{4},-\frac{6}{8}, 1 \frac{4}{5},-0.5,1.4$
13) If b represents a negative number, is $b \cdot b$ a positive or negative number?
14) A submarine 530 feet below sea level descends an additional 100 feet before ascending 120 feet. What is the location of the submarine?
a) 750 ft below sea level
b) 550 ft below sea level
c) 510 ft below sea level
d) 510 ft above sea level
15) Name two integers have a product of -30 and a sum of -7 .
16) The temperature at 9 AM was $11^{\circ} \mathrm{F}$. The temperature dropped 4 degrees per hour for the next three hours. What is the temperature at noon?
a) $-3^{\circ} \mathrm{F}$
b) $-7^{\circ} \mathrm{F}$
c) $-1^{\circ} \mathrm{F}$
d) $-2^{\circ} \mathrm{F}$
17) What addition expression is represented by the model below?

18) What subtraction expression is represented by the model below?

19) When the following fractions are converted to decimals, which one will result in a repeating decimal?
A. $\frac{7}{10}$
B. $\frac{5}{12}$
C. $\frac{5}{8}$
D. $\frac{3}{5}$
20) For your birthday, you decide to go parasailing over the ocean. You're peacefully sailing at 120 feet above sea level, and then you ascend 25 feet. Finally, you decide to dive into the ocean, and you fall 165 feet. Describe your new location. Justify your answer with an illustration, an equation, and/or complete sentences.

Solve for x in each equation below. SHOW ALL STEPS:
$21 . x-4.23=-9.05$
22. $-8 x=-60$
23. $x+4=-91 / 4$
25. $31 / 2 x=-70$
24. $\frac{x}{-5}=-10$
26. $x+8=-42$
27. Fill in the table:

Fraction	Decimal	Percent
$31 / 4$		
	0.33	
$-1 / 8$		
$5 / 6$	-5.375	
	16.4	
$-83 / 11$		

Adding/Subtracting Fraction Review

Adding Fractions with Like Denominators
$\qquad$$\frac{1}{7}+\frac{3}{7}$ Add the numerators. Denominator is unchanged.

Adding Fractions with Unlike Denominators

\[\)| $\frac{1}{8}+\frac{2}{3}$ |
| :--- |
| Rewrite with common
 denominator |
| $3 \times \frac{1}{8}+\frac{2}{3} \times 8$ |
| 3×8 |
| Add the numerators |\(\frac{\frac{3}{24}+\frac{16}{24}}{}

\]

$\frac{19}{24}$

Adding Fractions

 with the same denominatorWrite the sum of each fraction below. Aemember when adding

Subtraction Fractions with UNLIKE denominators

$$
\frac{5}{6}-\frac{3}{9}=
$$

1. Find the LCM of the denominators. This is your new denominator.

$$
\begin{array}{ll}
\text { Mumpins of } 3-1.12 .18 \\
\text { Mumples of } 3+2.18 .27
\end{array} \quad \text { LCM }=18
$$

2. Rewrite the problem using the LCM.

$$
\frac{5}{6} \times 3=\frac{3}{9 \times 2}=\frac{15}{18}=\frac{6}{18}
$$

3. Subtract the numerators. The denominator stays the same.

$$
\begin{gathered}
\frac{15}{18}-\frac{6}{18}=\frac{9}{18} \\
\frac{9}{18}+8=\frac{1}{2}
\end{gathered}
$$

4. Simplify

Oivide by the Oreatest Cammen Fattor.

Directions: Write the fraction for each diagram. Then, add the fractions. Make sure the denominators are the same.

	(2) $\begin{array}{rrr}-\mid 0 & +19 \\ & +\end{array}$	(2) $\mathrm{m} / \mathrm{N} \times \mathrm{N}$	-
$\underbrace{-\mid m} \begin{aligned} &-10 \\ &+\end{aligned}$			
$\Theta^{-\mid N} \begin{aligned} &-\|+\| \\ &+\end{aligned}$			
			(18
(a) $\begin{array}{rrr}-\mid N & -1 m \\ +1\end{array}$	$\left\lvert\, \begin{array}{rr} -\mid \omega & \infty \mid \odot \\ \text { © } & +\mid \end{array}\right.$	(1) $\begin{array}{r}-\mid \infty \sim \\ \\ \sim\end{array}$	

Adding Integers

Adding the SAME Sign

Adding Rational Numbers

To add rational numbers with the same sign, add their absolute values.
The sum is:

- positive if both integers are positive.
- negative if both integers are negative.

To add rational numbers with different signs, subtract their absolute values.
The sum is:

- positive if the positive integer's absolute value is greater.
- negative if the negative integer's absolute value is greater.
- Remember: What do you have more of, positives or negatives, and how many more do you have?

Examples:

1. Find $-3+(-2)$.

Start at 0 . Move 3 units down to show -3.

From there, move 2 units down to show -2 .

So, $-3+(-2)=-5$.

2. Find $\mathbf{- 2 6}+(\mathbf{- 1 7})$.
$-26+(-17)=-43$
3. Find $5+(-3)$.

So, $5+(-3)=2$.
So, $-3+2=-1$.

Find the sum using two-color counters.
Find $-3+(-2)$.

Three negatives (-3) plus another two negatives (-2) gives you five negatives (-5).

Find $5+(-3)$.

First, match up your zero pairs.

Remember that the sum of a number and its opposite is always 0 . A number and its opposite are zero pairs.

Then cross out your zero pairs.

There are three
positives left so,
$5+(-2)=3$.

Adding Integers with Models

Problem	Sum	With Counters	Number Line
1) $3+(-5)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
2) $2+(-8)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
3) $4+(-4)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
4) $(-7)+4=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
5) $(-6)+5=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$

What is the algorithm (rule) for adding integers with DIFFERENT signs?

Problem	Sum	With Counters	Number Line
1) $-5+-2=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
2) $-2+-3=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
3) $-2+-4=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
4) $7+4=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$
5) $-2+-3=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{\longrightarrow}$

What is the algorithm (rule) for adding integers with the SAME signs?

You Try:

Use (+) and (-) counters or a number line to find the sum.

1) $-5+(-2)$
2) $8+1$
3) $-7+10$
4) $16+(-11)$
5) $-22+(-7)$
6) $-50+50$
7) $-10+(-10)$
8) $100+(-25)$
9) $-35+(-20)$

Use any method to find the sum.
10) $-7+(-3)+10$
11) $-42+36+(-36)$
12) $-17+17+9$
13) $5+(-8)$
14) $-3+3$
15) $-3+(-8)$
16) $-7+(-7)$
17) $-8+10$
18) $-7+13$
19) $\frac{5}{8}+\frac{1}{8}$
20) $-\frac{1}{4}+\frac{3}{4}$
21) $-\frac{7}{15}+\left(-\frac{4}{15}\right)$
22) $-1.4+(-1.3)$
23) $1.4+(-.27)$
24) $-28+1.6$
25) $5+11+(-5)$
26) $7+(-5)+5$
27) $9+(-9)+10$

Write an addition expression to describe each situation. Then find each sum.
28) HAWK A hawk is in a tree 100 feet above the ground. It flies down to the ground.
29) RUNNING Leah ran 6 blocks north then back 4 blocks south.

More Adding Rational Numbers

If $a=-3, b=-5$ and $c=5$, find the sum.

1) $c+b$
2) $a+|b|$
3) $|a+b|$
4) $a+b+c$
5) $a+|c+b|$
6) $a+c$

If $x=-10, y=2$ and $z=-1$, find the sum.
7) $x+z$
8) $|z|+x$
9) $|x+y+z|$
10) $z+y$
11) $x+y$
12) $|x+y|+z$

Write an addition expression to describe each situation. Then find each sum.
13) FOOTBALL A team gains 20 yards. Then they lose 7 yards.
14) MONEY Roger owes his mom $\$ 5$. He borrows another $\$ 6$ from her.
15) HOT AIR BALLOON A balloon rises 340 feet into the air. Then it descends 130 feet.
16) CYCLING A cyclist travels downhill for 125 feet. Then she travels up a hill 50 feet.

ADDING INTEGERS

NAME:

ANSWER THE PROBLEMS BELOW AND CONNECT THE DOTS IN THE ORDER YOU CREATED. I STARTED THE PATTERN FOR YOU...NOW YOU DO THE REST. NOTE: PATTERNS ARE NOT CONNECTED TOGETHER

ADDING INTEGERS

ANSWER THE PROBLEMS BELOW AND CONNECT THE DOTS IN THE ORDER YOU CREATED. I STARTED THE PATTERN FOR YOU...NOW YOU DO THE REST. NOTE: PATTERNS ARE NOT CONNECTED TOGETHER

~ Subtracting Integers ~

Example 1: Subtract $5-(-8) \rightarrow$ Instead of subtracting -8, ADD positive 8

Example 2: Subtract $-3-(4) \rightarrow$ Instead of subtracting 4, ADD negative 4

Why does this work?? Take a look at the visuals below:
Using a number line:
$2-(-3)=$
If you were subtracting $2-3$, you would start at 2 and
move back 3. But since you're subtracting a negative 3 ,
you'll do the opposite!!

$$
2--3=2++3=5
$$

Begin with 5 positive counters.
You don't have 3 negatives to take away, so you must add in enough zero pairs to be able to take 3 away. That leaves you with 8 positives!!
(1) (1) (1) (1) (1) 12$)^{24}$

> Using counters:

$$
5-(-3)=
$$

13) $-86-(-86)=$ \qquad 14) $13-(-10)=$ \qquad
14) $3-8=$ \qquad 16) $-16-(-16)=$ \qquad 17) $0-4=$ \qquad
15) $-6-8+(-32)=$ \qquad 19) $45+(-30)-(-5)=$ \qquad 20) $-912-4+-16=$ \qquad
16) $-52-4=$ \qquad

- $(-1)^{2}$

Evaluate the following problems, and SHOW your WORK:
9) $14-15=$ \qquad 10) $-3-(-4)=$
\qquad 11) $0-(-6)=$ \qquad
~ Subtracting Integers Practice
For \#s 1-4, illustrate the subtraction on a number line.

1) $3-5=$ \qquad 2) $-1-1=$ \qquad

| \mid |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| 5 | | | | | | | | | |

4) $3-(-2)=$ \qquad

For \#s 5-8, draw counters to illustrate the subtraction. Remember to use zero pairs if needed!

5) $-2-(-1)=$ \qquad 6) $4-5=$ \qquad
7) $-4-2=$ \qquad 8) $3-(-3)=$ \qquad

Subtracting Rational Numbers

Are you able to add rational numbers? Then you are able to subtract integers.

To subtract an integer, add its additive inverse. In other words, you subtract rational numbers by adding the opposite.

Examples:

1. Find 8-13.

$$
\begin{aligned}
8-13 & =8+(-13) & & \text { To subtract } 13, \text { add }-13 \\
& =-5 & & \text { Simplify. }
\end{aligned}
$$

Check by adding $-5+13 \stackrel{?}{=} 8$
$8=8 V$
2. Find - $\mathbf{1 0}-7$.

$$
\begin{aligned}
-10-7 & =-10+(-7) & & \text { To subtract 7, add }-7 . \\
& =-17 & & \text { Simplify. }
\end{aligned}
$$

$$
\text { Check by adding } \begin{aligned}
-17+7 & \stackrel{?}{=}-10 \\
-10 & =-10
\end{aligned}
$$

Subtract.

1) $5-2$
2) $6-(-7)$
3) $-3-2$
4) $8-13$
5) $-7-(-7)$
6) $6-12$
7) $15-(-7)$
8) $-15-6$
9) $-3-8$
10) $-10-12$
11) $13-(-12)$
12) $14-1-$
13)
14) $10-(-20)$
15) $-16-14$
16) $-25-25$
17) $6-(-31)$
18) $-18-(-40)$
19) $15-1-$

Evaluate each expression if $r=-4, s=10$, and $t=-7$.
19) $r-7$
20) $t-s$
21) $s-(-8)$
22) $t-r$
23) $s-\dagger$
24) $r-s$
25) FOOTBALL A team gained 5 yards on their first play of the game. Then they lost 6 yards. Find the total change in yardage.
26) CHECKING Your checking account is overdrawn by $\$ 50$. You write a check for \$20. What is the balance in your account?
27) TEMPERATURE The average temperature in Calgary, Canada, is $22^{\circ} \mathrm{C}$ in July and $-11^{\circ} \mathrm{C}$ in January. Find the range of the highest and lowest temperatures in Calgary.

Evaluate each expression if $\mathrm{x}=-8, \mathrm{y}=7$, and $\mathrm{z}=-11$.
28) $x-7$
29) $-13-y$
30) $-11-z$
31) $x-z$
32) $z-y$
33) $y-x$
35) $|y-z|$

Subtracting Integers with Models

Problem	Sum	With Counters	Number Line
1) $3-2=$			$\xrightarrow[-70-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
2) $-2-(-1)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+78+8+10]{ }$
3) $4-(-4)=$			$\xrightarrow[-70-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
4) $(-7)-(-4)=$			$\xrightarrow[-70-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
5) $6-10=$			$\xrightarrow[-70-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{4}$
6) $-5-(-2)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+78+9+10]{ }$
7) $-2-(-3)=$			$\xrightarrow[-70-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
8) $2-4=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+78+9+10]{ }$
9) $1-(-9)=$			$\xrightarrow[-10-9-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7+8+9+10]{ }$
10) $-2-(-3)=$			

What is the algorithm (rule) for subtracting integers?

36) $x-z-y$

DAFFYNYTION DECODDER

TWIN:

CARROT

JUICE:

-254	476	19	542	534	-129	-7	-980	-607

MALE
SURFER:
$\begin{array}{lllllllllll}60 & 476 & -7 & -129 & 633 & 542 & 19 & -444 & -129 & 476 & 19\end{array}-589$

TO DECODE THESE THREE DAFFYNITIONS, FOLLOW THESE DIRECTIONS:
 Work any problem below and find your answer in the code. Each time the answer appears in the code, write the letter of that problem above it. KEEP WORKING AND YOU WILL DECODE DEFINE PRINT.

(L) $-78+-37=$$-562-45=$
(E)
$-81--623=$$762+-129=$
$17-399=$
(D)
(D) $-808+219=$
(T)
$445--89=$
(B) $356+-800=$
(I) $-490+-490=$
(H) $671-925=$
(M)

Temperature in Tahiti: $27^{\circ} \mathrm{C}$ Temperature in Siberia: ${ }^{-} 33^{\circ} \mathrm{C}$. What is the difference in these temperatures?
(P)

Horatio Hornswoggle was born: 57 B.C.
Horatio Hornswoggle died.
16 A.D.
How old was Horatio when he died?
(
Bank account balance: $\$ 357$
Check written for: $\$ 486$.
What was the new balance? \qquad
(F) Altitude of mountain climber:

4572 meters.
Altitude of submarine
commander: -609 meters.
What is the difference in these altitudes?
(A)

The Roman Republic was established: 509 B.C.
The Roman Empire fell 985 years later.
In what year did the Empire fall? \qquad AD
(R) Altitude of scuba diver: -12 meters.
Altitude of shark: -31 meters.
What is the difference in these altitudes?
(N) Temperature at 8:00 A.M.: ${ }^{-15} 5^{\circ} \mathrm{C}$ Temperature rose $8^{\circ} \mathrm{C}$ during the next hour. What was the temperature at 9:00 A.M. ? \qquad ${ }^{\circ} \mathrm{C}$

solving One-step Equations +/=

Solving a one-step equation with integers requires you to create zero pairs to isolate the variable.

Examples:

\#1 Solve: $r+5=-10$
Check: $\quad r+5=-10$
$-5 \quad-5$
$r=-15$

$$
\begin{aligned}
-15+5 & =-10 \\
-10 & =-10
\end{aligned}
$$

$$
\text { Solve: } \begin{array}{r}
p-(-3)=-6 \\
p+3=-6 \\
-3 \quad-3 \\
p=-9
\end{array}
$$

$$
\text { Check: } \quad p-(-3)=-6
$$

$$
-9-(-3)=-6
$$

$$
-9+3=-6
$$

$$
-6=-6 \quad \checkmark
$$

You Try!

Solve each equation. Don't forget to check your answer.

1. $x-13=-22$
2. $x-(-4)=10$
3. $y+16=-2$
4. $z+(-5)=12$
5. $t+(-7)=-5$
6. $r-(-12)=-17$
7. $j+23=54$
8. $y-14=9$
9. $e+(-13)=-2$

Multiplying \& Dividing Rational \#'s

SAME SIGN = POSITIVE	DIFFERENT SIGNS = NEGATIVE
$4 \times 3=12$	$-4 \times 3=-12$
$-6 \div(-2)=3$	$-6 \div 2=-3$
$-\frac{2}{5} \xrightarrow{\mathrm{x}}-\frac{2}{3}=\frac{4}{15}$	$-\frac{2}{5} \xrightarrow{x} \frac{2}{3}=-\frac{4}{15}$
$-\frac{1}{18} \div-\frac{1}{9}=\frac{1}{2}$	

Try These!

1) $-8 x-3=$
2) $16 \div-4=$
3) $-20 \times 0.5=$
4) $0.72 \div 8=$
5) $-56 \div 7=$
6) $12 \times-12=$
7) $-90 \div-6=$
8) $-18 x-3=$
$9-\frac{1}{4} \cdot \frac{2}{3}=$
9) $\frac{1}{3} \div-5=$
10) $-\frac{2}{3} \div-\frac{1}{2}=$
11) $15 \times-60=$
12) $-1 \frac{1}{2} \cdot \frac{3}{4}=$
13) $-25 x-16=$
14) $-51 \div 3=$

Multiplying Rational Numbers

The PRODUCT of two rational numbers with the same sign is always positive.

Examples:

1) $2(6)=12$
2) $-10(-6)=60$
3) $(-4)^{2}=16$

You Try:

1) $-12(-4)=$
2) $(-5)^{2}=$
3) $6(7)=$
4) $-34(-2)=$
5) $-20(-8)=$
6) $(-2)^{4}$

The PRODUCT of two rational numbers with different signs is always negative.

Examples:

1) $6(-4)=-24$
2) $-5(7)=-35$

You Try:

1) $-7(11)=$
2) $(-3)^{3}=$
3) $-2(14)=$
4) $(-3)(-4)(-5)=$
5) $(-9)(-1)(-5)=$
6) $8(-12)=$

Evaluate each expression if $a=-6, b=-4, c=3$, and $d=9$. Show all work including substitution and computation.
7) $-5 c=$
8) $b^{2}=$
9) $2 a=$
10) $b c=$
11) $a b c=$
12) $a b c^{3}=$
13) $-3 a^{2}=$
14) $-c d^{2}=$
15) $-2 a+b=$

MULTIPLYING INTEGERS - A

SOLVE.

Dividing Rational Numbers

The QUOTIENT of two rational numbers with the same sign is always positive.

Examples:

1) $80 \div(10)=8$
2) $\frac{-66}{-11}=6$
3) $-42 \div(-6)=7$

You Try:

1) $-14 \div(-7)=$
2) $\frac{-80}{-20}=$
3) $-420 \div(-3)=$
4) $\frac{540}{45}=$
5) $-24 \div(-8)=$
6) $100 \div(-0)=$

The QUOTIENT of two rational numbers with different signs is always negative.

Examples:

1) $80 \div(-10)=-8$
2) $\frac{-66}{11}=-6$
3) $-42 \div 6=-7$

You Try:

1) $-12 \div 4=$
2) $\frac{18}{-2}=$
3) $-10 \div 10=$
4) $350 \div(-25)=$
5) $\frac{-256}{16}=$
6) $-12 \div(4)=$

Evaluate each expression if $d=-24, e=-4, \& f=8$. Show all work including substitution and computation.
7) $12 \div e$
8) $40 \div f$
9) $d \div 6$
10) $d \div e$
11) $f \div e$
12) $e^{2} \div f$
13) $\frac{-d}{e}$
14) ef $\div 2$
15) $\frac{f+8}{-4}$

DIVIDING INTEGERS - A
EXAMPLE \#1

$(-32) \div(-8)=32 \div 8$
YOU HAVE A NEGATVE THIRTY-TWO ANDA NECATIVE ECOHT.DNDE THE NUMEERS, $32 \div 8=4$.

SOLVE

1.

\qquad
\qquad
5. $12 \div(-6)=$ \qquad
7. $(-35) \div(-7)=$ \qquad
9. $(+36) \div 9=$ \qquad
11. $(-49) \div(+7)=$ \qquad

$$
15 \div 5=
$$

\qquad
15. $-28 \div 4$ \qquad
$0 \div-8=$ \qquad
$(-32) \div+4=$ \qquad
21. $(-12) \div(-2)=$ \qquad
$72 \div(-9)=$ \qquad
25. $(-30) \div+3=$ \qquad
$48 \div(-8)=$ \qquad
\qquad 30.
30. $(-45) \div(+9)=$ \qquad
32. $-24 \div 12=$ \qquad

MULTIPLYING AND DIVIDING INTEGERS RULES （ONLY USED FOR MULTIPLICATION AND DIVISION）

Put your fingers over the two signs of the numbers in your problem．The remaining sign is the sign of the answer．

Cover the two signs in any row column or diagonal the remaining sign is the sign of your answer．

Multiplying and Dividing Puzzle

T	$\stackrel{\text { Ni}}{ }$	8	\％	$\stackrel{\sim}{0}$	\％
9	ล	$\bar{\infty}$	\％	¢	®
¢	$\stackrel{6}{1}$	4	¢	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$
－	$\stackrel{\text { ì }}{ }$	9	N	$\stackrel{\sim}{0}$	$\stackrel{8}{7}$
\bigcirc	$\stackrel{\infty}{\sim}$		$\stackrel{\text { ¢ }}{ }$	이	フ
N	－	$\stackrel{\infty}{1}$	N	안	Ј
${ }_{1}^{\infty}$	－	N	$\stackrel{\infty}{\sim}$	\％	\bigcirc
＊	$\stackrel{\sim}{\sim}$	¢	N	－	$\stackrel{\sim}{\sim}$
－	\bigcirc	の	\bigcirc	\sim	－
∞	N	N	－	O	¢
๓	の	へ	$\stackrel{\infty}{\sim}$	$\stackrel{n}{1}$	－
\bullet	∞	\％	$\stackrel{0}{0}$	－	N
i	へ	$\bar{\square}$		\％	¢
＋	N	¢	N	－	$\stackrel{\sim}{\sim}$
N	\bullet	$\stackrel{\infty}{\text { ¢ }}$	N	아	¢
\times	0	の	\bigcirc	n	N

The multiplication table below contains 42 mistakes．Shade in
each box that contains a mistake．Please use pencil so you
can erase if necessary．
YOU WILL END UP WITH A FAMOUS FARMING EXPRESSION！

Mulitiplying and Dividing Practice

Multiply and/or Divide.

1) $-15 \div 3=$	2) $-30(5)=$	3) $22 \div(-2)=$
4) $-14(-6)=$	5) $-8 \div(-8)=$	6) $-7(15)=$
7) $225 \div(-15)=$	8) $7(-3)=$	9) $-38 \div 2=$
10) $-2(-10)=$	11) $-500 \div(-50)=$	12) $-3(-3)(4)=$
13) $(-5)^{2}=$	14) $-24 \div(-8)=$	15) $20(-6)=$
16) $-49 \div(-7)=$	17) $(-13)^{2}=$	18) $\frac{-36}{-4}=$
19) $-3(4)=$	21) $3(-3)=$	
22) $\frac{0}{4}=$	23) $(-5)(-3)(4)=$	24) $-189 \div(-21)$

Evaluate each expression if $m=-32, n=2$, and $p=-8$. Show all your work!

25) $m \div n=$	26) $p \div 4=$	27) $p^{2} \div m=$
28) $m \div p=$	29) $\frac{-p}{n}=$	30) $p \div\left(-n^{2}\right)=$
31) $\frac{p}{4 n}=$	32) $\frac{18-n}{-4}=$	33) $\frac{m+8}{-4}=$
34) $\frac{m+n}{6}=$	35) $m n p=$	36) $m \div n=$

26) $\mathrm{p} \div 4=$
27) $p^{2} \div m=$
28) $m \div p=$
29) $\frac{-p}{n}=$
30) $p \div\left(-n^{2}\right)=$
31) $\frac{p}{4 n}=$
32) $m n p=$
($n \div n=$

Solving One-Step Equations x/〒

Solving a one-step equation with integers requires you to create zero pairs to isolate the variable.

Examples:

\#1

$$
\text { Solve: } \begin{aligned}
-2 x & =12 \\
\div-2 & \div-2 \\
x & =-6
\end{aligned}
$$

Check: $-2 x=12$
$-2(-6)=-12$

$$
-12=-12 \checkmark
$$

\#2

$$
\text { Solve: } \begin{aligned}
\quad \frac{x}{-5} & =-7 \\
(-5) \frac{x}{-5} & =-7(-5) \\
x & =35
\end{aligned}
$$

Check: $\quad \frac{x}{-5}=-7$

$$
\frac{-35}{-5}=-7
$$

$$
--7=-7 \quad \checkmark
$$

You Try!
Solve each equation. Don't forget to check your answer.

Solve	
1) $\frac{x}{5}=-2$	
2) $-40=-5 p$	
3) $-2=\frac{m}{16}$	
4) $-11 \mathrm{k}=22$	
5) $\frac{a}{29}=5$	
6) $-22 \mathrm{a}=-418$	

Mixed Operation Practice

Add, Subtract, Multiply or Divide.

1) $4-19=$	2) $-1820 \div(-20)=$
3) $-44+(-95)=$	4) $38-54=$
5) $82 \cdot 86=$	6) $-3675 \div(-75)=$
7) $-14-2=$	8) $46-60=$
9) $82 \cdot 65=$	10) $56 \cdot(-41)=$
11) $13 \cdot 62=$	12) $57 \cdot(-7)=$
13) $-1860 \div(-31)=$	16) $74-(-78)=$
15) $80+63=$	18) $-6+64=$
17) $31+(-60)=$	20) $5-8=$
19) $17+89=$	22) $38+53=$
21) $7161 \div(-77)=$	24) $-1260 \div(-30)=$
23) $-56 \cdot(-55)=$	26) $71 \cdot 77=$
25) $-18-98=$	28) $56+(-20)=$
29 $1610 \div 46=$	30) $-168 \div 2=$

1. What Did the Sardine Say When a Submarine Went By?

$$
\begin{array}{lllllllllllllllllll}
\hline-56 & 36 & 36 & -33 & -35 & -12 & -12 & 7 & -35 & -12 & -96 & -35 & 130 & 36 & 31 & 39 & 9 & 36 & 39
\end{array}-569
$$

2. What Happened to the Grocer Who Stacked All the Liquid Detergents on a High Shelf?

TO DECODE THE ANSWERS TO THESE QUESTIONS:

Solve any equation below and find the solution in the code. Each time it appears, write the letter of the exercise above it. Keep working and you will decode the two answers.
(1) $n+12=4$
(E) $4 \mathbf{x}=36$
(1K) $\frac{v}{3}=-11$
(F) $w-9=22$
(S) $-15 r=-75$
(L) $14=\frac{-u}{4}$
(1) $-7 t=42$
(B) $\frac{-1}{5} y=-20$
(T) $-32=x+(-20)$
(G) $x-(-16)=44$
(H) $42=6 d$
(C) $\frac{1}{8} y=-12$
(III) $-4=11+m$
(A) ${ }^{-} x=35$
(1) $-48=2 q$
(P) $-3=\frac{-\mathbf{a}}{13}$
(N) $13=\frac{\boldsymbol{n}}{10}$
(0) $-18+z=18$
(1) $-50=19+p$
(J) $-125=-5 k$

Converting Fractions to Decimals

To convert from a fraction to a decimal, you \qquad the
\qquad by the \qquad —.

memememememememememememememememe

$$
\frac { 3 } { 4 } \rightarrow 3 \div 4 4 \longdiv { 3 ! 0 0 }
$$

$$
\frac{-28 \downarrow}{20}
$$

-20

You Try:

1) $\frac{2}{5}=$ \qquad 2) $\frac{2}{8}=$ \qquad 3) $\frac{13}{20}=$
\qquad
2) $1 \frac{1}{2}=$ \qquad 5) $\frac{5}{7}=$ \qquad 6) $\frac{1}{9}=$ \qquad

Converting Decimals to Fractions

If you can \qquad it as a decimal, you can \qquad it as
a fraction. Say the decimal using the correct place value, write it
as a fraction and simplify.

Examples:

You Try:

1) $0.3=$ \qquad 2) $0.45=$ \qquad 3) $7.1=$ \qquad
2) $3.5=$ \qquad
3) $0.625=$ \qquad
4) $2.002=$ \qquad

Fractions, Decimals \& Percents

EXAMPLE Changing a Percent to a Fraction

Express 35% as a fraction.

- Change the percent directly to a fraction with a denominator of 100 . The number of the percent becomes the numerator of the fraction.

$$
35 \%=\frac{35}{100}
$$

- Simplify, if possible.
$\frac{35}{100}=\frac{7}{20}$
35% expressed as a fraction is $\frac{7}{20}$.

EXAMPLE Changing Decimals to Percents

Express 0.7 as a percent.
$0.7 \times 100=70$

- Multiply the decimal by 100.
$0.7 \rightarrow 70 \%$
- Add the percent sign.

So, 0.7 expressed as a percent is 70%.

EXAMPLE Changing Percents to Decimals

Change 4% to a decimal.

- Express the percent as a fraction with 100 as the denominator.

$$
4 \%=\frac{4}{100}
$$

- Change the fraction to a decimal by dividing the numerator by the denominator.

$$
4 \div 100=0.04
$$

So, $4 \%=0.04$.

Converting Practice

Percent	Decimal	Fraction
32%	0.32	$\frac{32}{100} \frac{\div 4}{\div} \frac{4}{4}=\frac{8}{25}$
	0.81	
40%		$\frac{4}{5}$
52%	1.25	
		$\frac{9}{11}$
		$\frac{12}{16}$
144%	0.06	

