Unit 6 Statistics

Statistical Questioning
Mean, Median, Mode \& Range
Dot Plots
Frequency Tables
Histograms
Box Plots
Mean Absolute Deviation

Name:

\qquad
Mrs. Bothers / Period \qquad

Unit 6: Statistics
 Standards, Checklist and Concept Map

Georgia Standards of Excellence (GSE):

MGSE6.SP.1: Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers

MGSE6.SP.2: Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape

MGSE6.SP.3: Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
MGSE6.SP.4: Display numerical data plots on a number line, including dot plots histograms, and box plots.
MGSE6.SP.5 : Summarize numerical data sets in relation to their context, such as by: a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement
c. Giving quantitative measures of center (median/mean) and variability (interquartile range, mean absolute deviation), as well as describing any overall pattern or any striking deviations from the overall pattern with reference to the context in which the data was gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data was gathered

What Will I Need to Learn??

\qquad Know that a statistical question will receive many different answers
\qquad To produce questions that include a variety of answer choices
\qquad To interpret graph of data by describing its center, spread, and shapeKnow that mean, median, \& mode describe the center of a set of dataKnow that range describes how much a set of data variesHow to display data in a dot plotHow to display data in a histogramHow to display data in a box plotTo describe the topic in question, including methods, units of measure
\qquad How to calculate mean and medianHow to find IQR (interquartile range) and MAD (mean absolute deviation)
\qquad To explain outliers in data

Math 6/7
 Unit 6 Calendar

1/6	1/7	1/8	1/9	1/10
Computer Lab: Unit 6 Pre-Test MSG, Statistical Questions	Mean, Median, Mode, Range	Measures of Center, Spread, and Shape	Dot Plots (Line Plots)	QUIZ
1/13	1/14	1/15	1/16	1/17
Frequency Tables \& Histograms	Box Plots and IQR	Box Plots	Stem \& Leaf Plots	Review
1/20	1/21	1/22	1/23	1/24
MLK Holiday	Computer Lab; Unit 6 Test	MAD	Review Activity OR Work on Project	Project Due

Unit 6 Vocabulary

Vocabulary Term	Definition	Picture/ Example
Box-and- Whisker plot (or "box plot")	A graph that uses a number line to show how data is distributed. It shows the minimum, lower quartile, median, upper quartile, and maximum values of the data.	
Dot plot (line plot)	A graph in which each value is shown as a dot above a number line	
Frequency	The number of times a value appears in a set of data	
Frequency	A table that lists the number of times (frequency) that a piece of data occurs. This table is often used as a method of recording data.	
Gable	A "hole" in the data, where no data is present	
Histogram	A bar graph used to display numerical data grouped in equal intervals.	
Interquartile	The range between the upper and lower quartiles. This represents the middle 50\% of the data.	
range (IQR)	The largest value in a set of data	
Maximum value	The "average" of a set of data, found by adding all values in a set of data and dividing by the number of values you added.	
Mean		

Unit 6 Vocabulary

Vocabulary Term	Definition	Picture/ Example
Measures of center	A number that describes the middle of the data.	
Measures of spread (or variation)	A number that describes how spread out the data is. (how much the data varies)	
Median	The middle number when a set of data is arranged in order.	
Minimum value	The smallest number in a set of data, and the endpoint of one whisker on a box plot.	
Mode	The number that occurs the most in a set of data.	
Outlier	A value that is far away from most other values in a data set.	
Peak	The highest point on a graph, where most data is present (also the mode)	
Range	The difference between the highest and lowest values in a set of data.	
Skew	This describes the "direction" or "side" that has the least data	
Stem-and-	A graph that organizes numerical data by splitting each piece of data into a "stem" and a "leaf", which each represent place value.	

Unit 6 Study Guide

1) What are the measures of center? \qquad
2) What are the measures of spread? \qquad
3) How do you calculate the interquartile range (IQR)? \qquad
4) What do you look for in the shape of data? \qquad
5) Big Bob scored the following points at eight basketball games: $\{21,24,9,11,16,7,24\}$ Calculate the following:
a. Mean: \qquad b. Median: \qquad
c. Mode: \qquad d. Range: \qquad
6) What is a statistical question? \qquad

Give an example: \qquad

Give a non-example: \qquad
7) Use the following data to create a box plot:

Ages of Students Who Downloaded "Divergent"								
10	18	17	12	13	15	15	14	14

Minimum:
Q $_{1}:$
Median:
Q3:
Maximum:
8) Which measure of center is MOST affected by an outlier? \qquad
9) Identify the IQR from the box plot below: \qquad

10) Use the box plot above to answer the following questions:
a) Minimum: \qquad b) Lower Quartile (Q_{1}): \qquad
c) Median: \qquad d) Uppoer Quartile (Q_{3}): \qquad
e) Maximum: \qquad f) Range: \qquad
g) What percent of the data is 15 or greater? \qquad
\qquad
i) The data is (Circle One): symmetrical skewed right skewed left

Use the Histogram below to answer questions 11-14.
Number of Jumping Jacks in 1 Minute

11) How many students can do more than 49 jj per minute? \qquad
12) How many students participated in the survey? \qquad
13) Which interval shows the mode/peak of the histogram? \qquad
14) How many people did EXACTLY 45 jumping jacks? \qquad
15) At a car dealership, the salespeople sold the following numbers of cars during 2018.

$28,15,35,19,22,59,23,28,19,11$

Determine the following:
a. mean $=$ \qquad b. median = \qquad c. mode $=$ \qquad
d. range $=$ \qquad e. $I Q R=$ \qquad f. $M A D=$ \qquad
g. outlier(s) = \qquad h. minimum $=$ \qquad i. maximum $=$ \qquad
16) Determine a set of data that has a mean of 12 , a range of 10 , and a median of 14 .
17) Elisabeth's test scores are $72,90,94,83$, and 85 . If she needs to maintain an 85 test average, what is the minimum score she needs on her next test?
18) Use the dot plot to find the following values:

Minutes To Eat Breakfast
a. mean $=$ \qquad b. median $=$ \qquad
c. mode $=$ \qquad d. range = \qquad
e. Describe at least 3 attributes about the SHAPE of the data.
19) Make a line plot for each set of data. Find the mean, median, mode, range, and any outliers of the data shown in the line plot.

52	48	52	51	Student Height in Inches
52	65	58	48	
60	45	50	52	
56	48	53	58	
62	49	51	49	

Mean: \qquad Median: \qquad Mode: \qquad
Range: \qquad Outliers: \qquad
20) The table shows the daily soda sales for a restaurant. Choose intervals, make a frequency table, and construct a histogram to represent the data.

Number of Sodas Sold Daily					
56	86	74	63	51	94
86	72	53	77	74	88
81	90	72	76	84	92
78	89	85	75	91	87

Statistical Questions

A STATISTICAL QUESTION is a question

 that can have a variety of answers.

Examples

How many books did my friends read this summer?

How tall are my classmates?

During which months were my family members born?

How many lunches did the cafeteria sell each day last month?

Non-Examples

How many pages are in the Hunger Games?

How old am I?

During which month is Valentine's Day?

How many milkshakes did Chick-fil-A sell yesterday?

You Try! Check "Yes" or "No" to indicate whether or not each question is statistical.

Question:	Yes	No
1- What grades did the students in my class score on the test?		
2- How many marbles in the jar?		
3- What does this apple cost?		
4- How fast can each of our dogs run 100 yards?		
5- How old are each of the 6th at East Cobb Middle School? teachers		
6- How many days are in March?		
7- How many pets does each of my friends have?	8- What did each of my classmates score on their last math test?	
9- Do you like peaches? 3-What was the temperature at noon today in Marietta?		
11-What was the winning score in the last Super Bowl?	10	
12- How many songs has Shawn Mendes written?	13- How many classmates binged Netflix over the break?	

Analyzing Data CENTER

$\mathrm{S} \quad \mathrm{P} \quad \mathrm{E} \boldsymbol{A}$ RTMAN

CENTER

A measure of \qquad is a single number that
describes how data looks in the middle!
Examples include mean, median and mode.

Let's take a look at the two graphs above, and see what you
notice about their CENTER.
The CENTER of Graph A is about 3.
The CENTER of Graph B is about \qquad .

What does this tell you? \qquad

Pg.7a

A measure of \qquad (or variation) is a single number that describes how far data is spread out. Examples include range and interquartile range (IQR)

Now, look at the SPREAD in both graphs.
Which graph has data that is CLOSER together? \qquad
Which graph has data that is FARTHER apart? \qquad
What does this tell you? \qquad

RTAN

The of a set of data gives a quick snapshot of its characteristics. Look for: \qquad (groups of data close together),
\qquad (a "hole" where no data is present),
\qquad (data that is far from the rest),
and \qquad (the highest point on the graph - the
mode)

pg. 7b

Data can also be skewed based on the relationship between the Mean, Median and Mode. The way we describe the skew is based on the direction of the "tail".

Graph B:

Number of Pets

Now, look at the SHAPE of both graphs.
Which graph is skewed left? \qquad
Do either of the graphs have an outlier? \qquad
What is the peak of Graph B? \qquad
Does Graph A have any gaps? \qquad

Mode (a.k.a. "the most")

The mode is the number that occurs \qquad in a set of data. You can have \qquad if all of the numbers in your data have the same frequency. You will have \qquad than one mode if more than one number occurs most in a data set.

Example: Find the mode of $6,4,10,11$, and 4 . Mode $=\underline{4}$

You Try:

a. Find the mode of $8,33,20,11,6$, and 12 . \qquad
b. Find the mode of $1,3,4,1,5,6$, and 3 . \qquad
c. Find the mode of $15,62,76$, and 62 . \qquad

You Try!

Find the mean, median and mode for the following data:

$$
3,5,13,6,1,2,3,2,1
$$

Mean: \qquad
Median: \qquad
Mode: \qquad
$100,111,122,133,144,155,166$
Mean: \qquad
Median: \qquad
Mode: \qquad

$$
8.4,14,10.6,2.4
$$

Mean: \qquad
Median: \qquad
Mode: \qquad

Measures of Center and Spread Summary

You Try:

Use the sets of data below to create dot plots and then use the data to find the mean, median, mode and range.

1) Number of siblings:

$$
3,2,0,4,1,1,1,2,1,3,5,3,4,0,2,1,0,8
$$

Mean: \qquad Median: \qquad
Mode: \qquad Range: \qquad
Outliers: \qquad Min: \qquad Max: \qquad
2) Number of downloaded apps on teens' cell phones: $8,12,10,15,11,20,12,12,9,10,11,13,12,9,10,13$, $11,13,9,12,14,9,12,15,10,11$

Mean: \qquad Median: \qquad
Mode: \qquad Range: \qquad
Outliers: \qquad Min: \qquad Max: \qquad

Interpreting Dot Plots (Line Plots)

Use the data in the dot plot to answer questions 1-4.

1) What is the mean number of shells collected? \qquad
2) What is the median number of shells collected? \qquad
3) What is the mode? \qquad
4) What is the range? \qquad

Fourteen students were surveyed about the time they spend exercising and playing video games each week. Compare the data by answering the questions 5-8.
5) What is the range for the hours of exercise? \qquad
For playing video games? \qquad
6) What is the mode for exercise? \qquad
Playing video games? \qquad
7) What is the median hours spent exercising? \qquad
Playing video games? \qquad
8) What is the mean number of hours spent exercising? \qquad
Playing video games? \qquad

Frequency Tables

A \qquad displays data that has been collected．

Season Soccer Scores

Score	Tally	Frequency
1	$\boldsymbol{\square}$	1
2	\square	1
3	$\square \square$	3
4	\square	1
5	$\square \square$	4

Intervals \＆Frequency Tables

Number of Cups of Coffee

Intervals	Tally	Frequency
0－3	$\square \square$	2
4－7	\＃ 17	3
8－11	7NML	8
12－15	\／	3
16－19	$\square \square$	2

Intervals must be：
1） \qquad
2）
3）
You Try：If your data ranges from 2 to 38 ，are the intervals below good（（ex ${ }^{2}$ ）or bad（
1） $1-10,11-20,21-30,31-40$
2） $1-10,10-20,20-30,30-40$
3） $1-10,11-15,16-35,36-40$

Histograms

A \qquad is a bar graph used to display numerical data grouped in equal intervals．

Example：

The students of Monster High took a survey of the ages of everyone attending the＂Ghouls Rule＂Movie．The results are displayed in the histogram below．

1）How many people from ages 10－19 attended the movie？ \qquad
2）How many people aged 50 or over attended the movie？ \qquad
3）How many kids younger than 20 attended the movie？ \qquad
4）How many total people attended the movie？ \qquad
5）What does the gap at the interval 40－49 mean？ \qquad

[^0]\qquad
Why or why not？ \qquad
7）Why must the bars on a histogram always be touching（unless there is a gap in data）？ \qquad

Making a Histogram

Determining Intervals

Look at your data. What is the best way to break that data up?

Examples:

Data Range	Scale	Intervals
3 to 46	$0-50$	$0-10,11-20,21-30,31-40,41-50$
1 to 248	$0-300$	$0-50,51-100,101-150,151-200,201-250$
4.1 to 5.4	$4-5.5$	$4-4.2,4.3-4.5,4.6-4.8,4.9-5.1,5.2-5.4$
52 to 964		

Organize the data in a \qquad using the intervals.

Example:

Pages Read per Student Last Weekend				
78	15	40	19	188
50	122	96	37	102

The data ranges from \qquad to \qquad The scale will go from \qquad to \qquad We can use the interval of \qquad .

Make a frequency table:

Pages Read per Student Last Weekend				
NUMBER:	1-50	51-100	101-150	151-200
tALLY:	7R1L	I	$\square \square$	\square
FREQUENCY:	5	2	2	1

Use the information in the frequency table on the previous page to create a histogram for the data.

Pages Read per Student Last Weekend				
NUMBER:	1-50	51-100	101-150	151-200
TALLY:	7812	-	$\square \square$	\square
FREQUENCY:	5	2	2	1

Title: \qquad

Remember: Bars must \qquad Label both \qquad .

Box Plot (Box \& Whiskers Plot)

A box plot (a.k.a. "box and whisker plot") uses a \qquad line to show how data is distributed. It shows the \qquad the maximum and \qquad values, which are also called the upper extreme and lower \qquad , and the upper and \qquad quartiles.

Example:

The list below shows the number of model airplanes owned by the members of the aviation club. Draw a box plot of the data.

$6,8,10,10,10,11,12,14,16,18,27$

1) Order the numbers from least to greatest. Then draw a number line that covers the range of the data.
2) Find the median, the extremes, and the first and third quartiles. Mark these points above the number line.

3) Draw the box so that it includes the quartile values. Draw a vertical line through the median value. Extend the whiskers from each quartile to the extreme data points.
4) Title your box plot!

Tip:

One key understanding about box plots is that each section represents 25% of the data. If one section is large, that tells you that the numbers in that section are more spread out. If the section is small, that tells you the data is closer together.
In the box plot below, you can see that the whisker for the upper quartile is much smaller than the whisker for the lower quartile. However, they both have the same number of data values. What does this tell you?

You Try:

1) Use the box and whiskers plot to answer the following questions:

a) What is the lowest number of students with cell phones in the data? \qquad
b) What is the highest number of students with cell phones in the data? \qquad
c) What is the median number of students with cell phones?
d) What is the range of students with cell phones? \qquad
2) Use the box and whiskers plot to answer the following questions:

Total Points Scored by Basketball Players in 2018

a) Median $=$ \qquad b) Lower Quartile (Q1) = \qquad
c) Maximum = \qquad d) Minimum $=$ \qquad
e) Range = \qquad f) Upper Quartile (Q3) = \qquad
Use the data given for each problem to find the requested information and make a box plot.

1) The number of pencils students have at school: $\{4,7,5,3,12,6,5\}$

Minimum: \qquad
$Q_{1}:$ Median: \qquad
Q3: \qquad
4) The Young Fashionistas Club tallied up the total pairs of shoes that each member owns. Make a box plot of this data:
$5,6,7,7,7,8,9,9,11,11,12,12,12,12,12$, $13,13,14,14,14,14,18,19,20,20$

Minimum: \qquad
Q: \qquad
Median:
Q3: \qquad
Maximum: \qquad
3) The heights of students on the soccer team, in inches, are: 56 , 69, 60, 64,63, 68, 68 and 66. Make a box plot for this data.

Minimum: \qquad
Q::
Median:
Q3:
Maximum: \qquad

Q: -
2) Number of books read by the $6^{\text {th }}$ grade teachers:
\qquad
Q1: \qquad
Q3:
\qquad
Maximum \qquad

Mean Absolute Deviation (MAD)

Mean absolute deviation, or "MAD", is the average distance of all data points from the mean. It is a way of looking at variability (spread) in a data set.

Example: Find the MAD of guests' ages at twins Solomon's and Sofia's party: $4,6,5,6,6$, and 9 .

Step 1: Find the mean: $\frac{4+6+5+6+6+9}{6}=\frac{36}{6}=6$
Step 2: Find the distance of each data point from the mean.

Age	4	6	5	6	6	9
Distance from mean	2	0	1	0	0	3

Step 3: Find the mean of the distances:

$$
\frac{2+0+1+0+0+3}{6}=\frac{6}{6}=1
$$

The MAD, or average distance from the mean, is 1.

Let's show "MAD" who's boss!!

1) Number of pets owned by students in Spanish Club: 5, 6, 3, 3, 4, and 3

Step 1: Find the mean.

Step 2: Find the distance of each piece of data from the mean.

Step 3: Find the mean of the distances.

The MAD is \qquad ..

1) Find the MAD of the number of pets owned by students in the Young Vets Club: 8, 2, 3, 1, 8, 1, 0, and 9
2) Notice that both problems above had the same mean of But, the MAD for problem 1 is \qquad and the MAD for problem 2 is What does this tell you about the data?

[^0]: 6）Can you tell whether a 25 －year－old attended the movie？

