Unit 4

One-Step Equations \& Inequalities

Checking Solutions to Equations Solving Equations
Writing Equations
Checking Solutions to Inequalities
Writing Inequalities
Graphing Inequalities on Number Lines Independent \& Dependent Variables

Direct Variation

Advanced Math 6
Unit 4 Calendar

11/5	11/6	11/7	11/8	11/9
Unit 3 Touchstones	No School Election Day	Unit 4 Pre-Test and Preview	Equations and Checking Solutions to Equations	ESP AIMS Activity
11/12	11/13	11/14	11/15	11/16
Solving Addition and Subtraction Equations	Solving Multiplication and Division Equations	Equation Word Problems	Equation Review	Equations Test
11/19	11/20	11/21	11/22	11/23
Thanksgiving Break				
11/26	11/27	11/28	11/29	11/30
Inequalities	Inequalities	Direct Variation	Direct Variation	Quiz
12/3	12/4	12/5	12/6	12/7
Who's the Boss Performance Task	Who's the Boss Performance Task	Who's the Boss Performance Task	Review	Test

Unit 4: One-Step Equations and Inequalities Standards, Checklist and Concept Map

Georgia Standards of Excellence (GSE):

GSE6.EE.5: Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine if a given number in a set makes an equation or inequality true.
GSE 6.EE.6: Use variables to represent numbers and write expression when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set

GSE 6.EE.7: Solve real-world and mathematical problems by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q and x are all nonnegative rational numbers.

GSE 6.EE.8 : Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in real-world problem. Recognize that inequalities of the form $x>c$ or x <c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

GSE 6.EE.9 : Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and use the equation $d=65$ to show the relationship between distance and time.

 What Will I Need to Learn??\qquad Write expressions (from word problems) with a variable that represents a number
\qquad To substitute to check the solution of an equation
Write equations based on real-world problems
\qquad Solve equations based on real-world problems
\qquad To substitute to check the solution of an inequality
\qquad Write inequalities to represent real-world problems and represent on number line
\qquad Show relationships between two variables (independent and dependent) using an equation, a table, and a graph

Unit 4 - Vocabulary

Term	Definition		
Constant of proportionality	The constant k in a direct variation equation; it is the ratio of $\frac{y}{x}$, or of dependent variable		
independent variable rate. It is the same as unit			
Dependent Variable	The "output" or y value, which "depends" on the input (x value/independent variable)		
Direct Proportion (Direct Variation)	A relationship between two variables, x (indpependent) and y (dependent) that can be written as y-kx, where $k \neq 0$		
Equation	A mathematical sentence containing an equal sign, showing two equivalent values		
Independent	The "input" or x value, which determines the "output" or y value/dependent variable		
Variable	A statement showing that two values are NOT equal, using one of the following signs: $>,<, \geq, \leq$ or \neq		
Inequality	Opposite operations that "undo" each other		
Inverse			
Operation		\quad	A symbol, usually a letter, that represents
:---			
a number	\quad	Variable	
:---			

Unit 4 - Vocabulary - You Try

Term	Definition
Constant of proportionality	
Dependent Variable	
Direct Proportion (Direct Variation)	
Equation	
Independent	
Variable	
Inequality	
Inverse	
Operation	
Variable	

Math 6 - Unit 4: One-Step Equations and Inequalities Review

1) What are inverse operations? \qquad
2) Write 3 key words that tell you to do addition and 3 key words that tell you to do subtraction in a word problem.
\qquad
\qquad
\qquad
\qquad
\qquad
3) Jack's Candy Shop sold 8 lollipops today. He now has only 5 lollipops left to sell. How many lollipops did he have originally?

4) Alex has some flowers and picks two more for her bouquet. She now has 11 flowers. How many flowers did she start out with?

Draw a Picture:	Write your equation and SHOW ALL WORK!
What does your variable represent?	

5) Mrs. Ledesma has x dollars. Amanda has 3 times more dollars than Mrs. Ledesma. If Amanda has $\$ 90$, write an equation and solve for the number of dollars Mrs. Ledesma has.

Equation: \qquad Solution: \qquad
Work:
6) Daneya spends half as many hours doing homework as her older brother, Dejon. If Dejon spends 4 hours doing homework, write an equation and solve for the number of hours, x, that Daneya does homework.

Equation: \qquad Solution: \qquad
Work:

Solve each equation. Show all steps. Include a "check".
7) $m+25=39$
8) $12 x=138$
9) $z-29=8$
10) $\frac{y}{7}=21$
11) $x+\frac{1}{4}=3 \frac{1}{2}$
12) $m-2.8=5.2$
13) $3.5 x=70$
14) $\frac{m}{2}=7.2$

Equations \& Parts of Equations

An \qquad is a mathematical sentence containing an equal sign that shows two equivalent values.

$x+2=6$

The equation says: what is on the left $(x+2)$ is equal to what is on the right (6)
So an equation is like a statement "this equals that".
Here we have an equation that says $4 x-7$ equals 5 , and all its parts:

A Variable is a symbol for a number we don't know yet. It is usually a letter like x or y .
A number on its own is called a Constant.
A Coefficient is a number used to multiply a variable ($4 \mathbf{x}$ means $\mathbf{4}$ times \mathbf{x}, so $\mathbf{4}$ is a coefficient)

An Operator is a symbol that shows an operation, ex: $+,-, x, \div$. Variables on their own (without a number next to them) actually have a coefficient of 1 (\mathbf{x} is really the same as $\mathbf{1 x}$)
15) Create your own word problem. Write an equation and show all the work to solve.

Solutions to Equations

Solutions to equations are values for the variables that make the two sides equal.

Think of a correct equation as a balanced scale.

If an equation has a variable you can check to see if a number is a solution to an equation by substituting the number in for the variable. If you get the same number on both sides, you have found a solution to the equation.
Example: EQUATION: $x+15=27$

Is $\mathrm{x}=12$ a solution?

$x=12$ is a solution
because $12+15=27$

Is $x=10$ a solution?

You Try:

1) Is $x=3$ a solution to the equation, $x+5=10$?
2) Is $y=5$ a solution to the equation, $\frac{30}{y}=6$??
3) Is $z=12$ a solution to the equation, $8 z=95$?

You Try:

Determine if the following value for the variable is a solution to

 the equation. Write yes or no.1) $9+x=21$, for $x=11$
2) $n-12=5$, for $n=17$
3) $25 r=75$, for $r=3$
4) $72 \div q=8$, for $q=9$
5) $28+c=43$, for $c=15$
6) $u \div 11=10$, for $u=111$
7) $\frac{k}{8}=4$, for $k=24$
8) $16 x=48$, for $x=3$
9) $73-f=29$, for $f=54$
10) $67-j=25$, for $j=42$
11) $39 \div v=13$, for $v=3$
12) $88+d=100$, for $d=2$
13) $14 p=20$, for $p=5$
14) $6 w=30$, for $w=5$
15) $7+x=70$, for $x=10$
16) $6 n=174$, for $n=29$

Replace each \diamond with a number that makes the equation correct.
17) $5+1=2+\diamond$
18) $10-\diamond=12-7$
19) $\diamond \cdot 3=2 \cdot 9$
20) $28 \div 4=14 \div \diamond$
21) $\diamond+8=6+3$
22) $12 \cdot 0=\diamond \cdot 15$
23) Carla had $\$ 15$. After she bought lunch, she had $\$ 8$ left. Write an equation using the variable, x, to model this situation. What does your variable represent?
24) Seventy-two people signed up for the soccer league. After the players were evenly divided into teams, there were 6 teams in the league. Write an equation to model this situation using the variable, x.

Solving Equations

There are many different ways to solve equations, but in general, the best way to solve an equation is to use inverse operations.

Inverse operations are opposite operations that "undo" each other. Addition is the inverse operation of \qquad and subtraction is the inverse operation of \qquad .
Multiplication is the inverse operation of \qquad and division is the inverse operation of \qquad _.

When you solve equations, you should:
${ }^{\text {st }}$ identify the \qquad you need.
$2^{\text {nd }}$ apply the inverse operation to \qquad sides of the equation.
3 rd check your solution by putting it back into the equation.

Example

1. Solve $8=x+3$. Check your solution.

Method 1 Use models.

Model the equation using counters for the numbers and a cup for the variable.

Remove 3 counters from each side.

There are 5 counters remaining.

Method 2	Use symbols.
$8=x+3$	Write the equation.
$-3=-3$	Subtract 3 from each side to "undo" the addition of 3 on the right.
$5=x$	
Check	
$8=x+3$	Write the equation.
$8 \stackrel{7}{=} 5+3$	Replace x with 5 .
$8=8$	This sentence is true.

Other Examples:

$$
\begin{aligned}
& \begin{array}{l}
2 x=10 \quad \text { Write the equation. } \\
\frac{2 x}{2}=\frac{10}{2} \\
x=5
\end{array} \\
& \begin{array}{rll}
\text { Check } & \quad 2 x=10 & \text { Divide each side by the coefficient } 2 . \\
2(5) & \stackrel{ }{=} 10 & \text { Replace } x \text { with } 5 . \\
10 & =10 & \text { This sentence is true. }
\end{array}
\end{aligned}
$$

$$
\frac{a}{3}=7 \quad \text { Write the equation. }
$$

$$
\frac{a}{3}(3)=7(3) \quad \text { Multiply each side by } 3 \text {. }
$$

$$
a=21
$$

Simplify.

$$
\text { Check } \frac{a}{3}=7 \quad \text { Write the original equation. }
$$

$$
\frac{21}{3} \xlongequal{\rightleftharpoons} 7 \quad \text { Replace } a \text { with } 21
$$

$$
7=7 \quad \text { This is a true sentence. } \checkmark
$$

$$
\begin{aligned}
& x-2=3 \text { Write the equation. } \\
& +2=+2 \quad \text { Add } 2 \text { to each side. } \\
& x=5 \quad \text { Simplify. } \\
& \text { Check }
\end{aligned}
$$

Subtraction Property of Equality

Words	If you subtract the same number from each side of an equation, the two sides remain equal.	
Examples	Numbers	Algebra
	$5=5$	$x+2=3$
	-3 $=-3$	$-2=-2$
	$2=2$	$x=$

When you solve an equation by subtracting the same number from each side of the equation, you are using the Subtraction Property of Equality.

You Try:

1) $c+2=5$
2) $6=x+5$
3) $3.5+y=12.75$

Addition Property of Equality

Words If you add the same number to each side of an equation, the two sides remain equal.

Examples

Numbers	Algebra
$5=5$	$x-2=3$
$+3=+3$	$+2=+2$
$8=8$	$x=5$

When you solve an equation by adding the same number to each side of the equation, you are using the Addition Property of Equality.

You Try:

1) $x-7=4$
2) $y-6=8$
3) $9=a-5$

Division Property of Equality

Words If you divide each side of an equation by the same nonzero number, the two sides remain equal.

Examples

Numbers	Algebra
$18=18$	$3 x=12$
$\frac{18}{6}=\frac{18}{6}$	$\frac{3 x}{3}=\frac{12}{3}$
$3=3$	$x=4$

When you solve an equation by dividing both sides of the equation by the same number, you are using the Division Property of Equality.

You Try:

1) $3 x=15$
2) $8=4 x$
3) $2 x=14$

Multiplication Property of Equality

Words If you multiply each side of an equation by the same nonzero number, the two sides remain equal.

Examples

$$
\begin{aligned}
& \text { Numbers } \\
& 3=3 \\
& 3(6)=3(6) \\
& 18=18
\end{aligned}
$$

$$
\begin{aligned}
& \text { Algebra } \\
& \frac{x}{4}=7 \\
& \frac{x}{4}(4)=7(4) \\
& x=28
\end{aligned}
$$

When you solve an equation by multiplying each side of the equation by the same number, you are using the Multiplication Property of Equality.

You Try:

1) $\frac{x}{8}=9$
2) $\frac{y}{4}=8$
3) $\frac{m}{5}=9$

More Equation Solving (+/-)

More Equation Solving (\mathbf{x} / \div)

Solve each equation. Show ALL your work.

1) $5 \mathrm{x}=25$	2) $\frac{y}{4}=7$
3) $\frac{n}{2}=19$	4) $6 \mathrm{~g}=54$
5) $8 \mathrm{~b}=64$	
	6) $\frac{h}{6}=11$
7) $\frac{f}{4}=9$	8) $7 \mathrm{~s}=49$

In an equation chain, you use the solution of one equation to help you find the solution of the next equation in the chain. The last equation in the chain is used to check that you have solved the entire chain correctly.
Complete each equation chain:

Challenge: Create your own equation chain using these numbers for the variables: $a=10, b=6, c=18$ and $d=3$

Equations Error Analysis

Sally is a silly little girl who makes mistakes! In Column \# 1, analyze her work and circle her mistake. In Column \#2, explain what she did wrong. In Column \#3, show how Silly Sally should work out the problem correctly. Show ALL work!

Silly Sally's Work (Circle her mistake):	What did Silly Sally do wrong?	Show Silly Sally how it's done! (Show ALL steps!)
$\begin{aligned} & x+5=28 \\ & +5+5 \\ & \hline x \quad=33 \end{aligned}$		
$\begin{aligned} \frac{12 a}{12} & =\frac{108}{12} \\ a & =8 \end{aligned}$		
$\begin{array}{r} w-42=18 \\ +18+18 \\ \hline w \quad=36 \end{array}$		
$\begin{array}{r} \frac{y}{15}=3 \\ \div 15 \div 15 \\ \hline y=5 \end{array}$		
$\begin{gathered} x+23.45=32 \\ -\quad 23.45-23.45 \\ \hline x= \end{gathered}$		
$\begin{aligned} & 4 \frac{1}{2} b=36 \\ & \cdot 4 \frac{1}{2} \quad \cdot 4 \frac{1}{2} \\ & b=162 \end{aligned}$		

Solving One-Step Equations Problems

You can solve a word problem using one-step equations.

1) Figure out what you know and what you want to know. What you want to know will be represented by a variable.
2) Set up an equation to solve for the unknown (variable).
3) Use inverse operations to solve.
4) Don't forget to label your solution and write it as statement.

Example:

Edgar jogs for 20 minutes. He stretched then jogs some more. Altogether, he jogs for 35 minutes. How far does he jog after he stretches?

What do you know? \qquad
What do you want to know? \qquad
What does your variable represent? \qquad
What operation is used in the equation? \qquad
What inverse operation will you use to solve? \qquad
Write the one-step equation to solve. \qquad
Solution: \qquad
Solution as a statement: \qquad

You Try:

1) Jan used 22 gallons of water in the shower. This amount is 7 gallons less than the amount she used for washing clothes. How much water does Jan use to wash clothes?

What do you know? \qquad
What do you want to know? \qquad
What does your variable represent? \qquad
What operation is used in the equation? \qquad
What inverse operation will you use to solve? \qquad
Write the one-step equation to solve. \qquad
Solution: \qquad
Solution as a statement: \qquad
2) While training for a sports event, Oliver hiked 5.3 miles each day. If he hiked for a total of 42.4 miles, how many days did Oliver hike?

What do you know? \qquad
What do you want to know? \qquad
What does your variable represent? \qquad
What operation is used in the equation? \qquad
What inverse operation will you use to solve? \qquad
Write the one-step equation to solve. \qquad
Solution: \qquad
Solution as a statement: \qquad
3) At a restaurant, Erin and her three friends decided to split the bill evenly. If each person paid $\$ 11$ what was the total cost of their bill?

What do you know? \qquad
What do you want to know? \qquad
What does your variable represent? \qquad
What operation is used in the equation? \qquad
What inverse operation will you use to solve? \qquad
Write the one-step equation to solve. \qquad
Solution: \qquad
Solution as a statement: \qquad
4) Ronique had 3 cookies and then she bought some more and then she had a total of 19 cookies. How many cookies did she buy?

What do you know? \qquad
What do you want to know? \qquad
What does your variable represent? \qquad
What operation is used in the equation? \qquad
What inverse operation will you use to solve? \qquad
Write the one-step equation to solve. \qquad
Solution: \qquad
Solution as a statement: \qquad -

Additional One-Step Equation Practice

1) Robyn had some video games, and then bought 4 more games. If she now has a total of 10 games, how many did she start out with?

What does your variable represent in the word problem? \qquad
What operation will you use to solve the word problem? \qquad
One Step Equation: \qquad
Solution: \qquad
2) Three friends found some money on the playground. They split the money evenly, and each person got \$14. How much money did they find on the playground?

What does your variable represent in the word problem? \qquad
What operation will you use to solve the word problem? \qquad 7) $\frac{3}{4} d=12$
8) $19=\frac{x}{7}$
10) $1.6 w=72$
3) Josh sent 574 text messages over the last 7 days. On average, how many text messages did he send each day?

What does your variable represent in the word problem? \qquad
What operation will you use to solve the word problem? \qquad
One Step Equation: \qquad
Solution: \qquad

Inequalities

An \qquad is a mathematical sentence that compares two quantities. We use the symbols and wording below to write inequalities.

Symbol	Meaning/Word Phrases	Example		
$<$	is less than is fewer than is below	$3<5$	\quad	is greater than
:---:				
is more than				
is above	$\quad 8>4$			

Determining if a number is a solution to an inequality requires you to substitute the value into the inequality and check to see if the value makes the inequality true.

Example:

The "Dollar Savers" store sells everything less than $\$ 5$. Would you be able to buy the following items at the "Dollar Savers" store? Use the inequality $x<5$ to substitute. Circle Yes or No.

Pg.14a

You Try:

1) To ride a roller coaster, you must be at least 48 " tall. Write an inequality and substitute to determine who can ride the roller coaster. Circle Yes or No.

Silly Steve Yes ${ }^{40^{\prime \prime}}$ No

Cool Carl

Laughing Lou

48"

Toothy Tim 52"

Circle all of the values that will satisfy each of the given

 inequalities.| 2) $y>8$ | 6 | 8 | 9 | 15 |
| :--- | :--- | :--- | :--- | :--- |
| 3) $m \leq 525$ | 525 | 510 | 500 | 650 |
| 4) $c<22$ | 12 | 25 | 30 | 22 |
| 5) $f \geq 80$ | 81 | 0 | 75 | 80 |
| 6) $g \geq 27$ | 27 | 26 | 25 | 20 |
| 7) $n<16$ | 15 | 10 | 0 | 16 |
| 8) $a>48$ | 36 | 48 | 24 | 64 |
| 9) $z \leq 100$ | 55 | 3 | 110 | 100 |

Writing Inequalities

Inequalities can be written to represent many situations.

Examples:

There are at least 25 students in the auditorium.

$\mathrm{n} \geq 25$ "at least" means greater than or equal to
n represents the number of students in the auditorium

No more than 150 people can occupy the room.

$r \leq 150$ "no more than" means less than or equal to
r represents the possible room capacity

You Try:

Write an inequality for each given situation.

1) You cannot eat more than 2 pieces of your Halloween candy per day.
2) There are less than 15 people in the room.
3) There are at most 12 books on a shelf.
4) There are fewer than 200 people at the game.
5) You must get at least 30 minutes of exercise each day.
6) You must be at least 15 years old to get your driver's permit.
7) A pony is less than 14.2 hands tall.
8) You must be over 12 years old to ride the go karts.
9) The pig weighs at most 220 pounds.
10) Every candy bar costs at least $\$ 2.20$.
11) You must complete at least 80% of your homework to attend the Homework Stars Celebration.
12) There are no more than seven people on the boat.
13) More than 40 people attended the movie last night.
14) You must be under 54 " to ride the kiddie rides at Six Flags.
15) Getting at least 8 hours of sleep at night keeps you healthy.

Graphing Inequalities

Inequalities can be graphed on a number line to illustrate all of the possible solutions.
$\mathbf{1}^{\text {st }}$ draw a number line and include the number in your inequality.
$\mathbf{2}^{\text {nd }}$ draw an open or closed dot on the number (depending on which inequality symbol is in the inequality. Use an open dot (0) if the inequality has the greater than (>) or less than (<) symbol. Use a solid dot (•) if the inequality has the greater than or equal to (\geq) or less than or equal to (\leq) symbol.
$\mathbf{3}^{\text {rd }}$ draw a line and an arrow that shows all of the possible solutions.

Examples:

$\boldsymbol{n}>\mathbf{9}$

Place an open dot at 9. Then draw a line and an arrow to the right.

The values that lie on the line make the sentence true. All numbers greater than 9 make the sentence true.
equal to means included
$n \leq 10$
Place a closed dot at 10. Then draw a line and an arrow to the left.

All numbers 10 and less make the sentence true.

TIP: If you keep the variable on the LEFT, the arrow at the end of your number line looks just like your inequality symbol.

You Try:

Graph the following inequalities on a number line. Then write a word phrase to describe each inequality.

1) $n \leq-5$
2) $n \leq 5$
$\stackrel{1}{\leftrightarrows}-6$

3) $n<1$

$\overleftrightarrow{-7}-6$
4) $n>5$

-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5

$\stackrel{-7}{-6}-1 \begin{array}{llllllllllll}-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
\qquad
7) $n \geq-7$
$\stackrel{1}{-7}-6$
8) $n<0$

Write the inequality AND graph for each problem below in 7-10
7) Fetty Wap has at least $\mathbf{3}$ fans in Mrs. Ledesma's $3^{\text {rd }}$ period math class.

Inequality: \qquad

Graph:

8) Mr. Shaw should send Mrs. Shaw more than 6 roses per day. Inequality: \qquad

Graph:

$$
\begin{array}{llllllllllll}
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
5 & 5 & 7
\end{array}
$$

9) Shawn snuck into a G Rated movie because he thought you had to be at most 7 years old.

Inequality: \qquad

Graph: | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 7 | | | | | | | | | | |

10) When trick or treating, Daniella's dream came true. A lady told her she could take no less than 5 pieces of candy.

Inequality: \qquad

Graph:

More Practice with Inequalities

Write an inequality for each situation, and graph on a number line.

1) Students must score at least 800 to pass the CRCT.
\qquad
2) You must be shorter than 48 " to ride the kiddie train.
\qquad
3) You should brush your teeth at least twice a day.
4) A good credit score is higher than 699.
\qquad
5) Classes can have no more than 34 students.
6) AJ needs to save more than $\$ 500$.

7) A book costs less than $\$ 20$
\square

More Inequalities Practice

1) Which number is a solution to the inequality below? $x>4$ a) 1 b) 2 c) 4 d) 5	2) Which number is NOT a solution to the inequality below? $x \leq 8$ a) 6 b) 7 c) 8 d) 9
3) Which statement describes "a number more than 22 "? a) $x<22$ b) $x>22$ c) $x \leq 22$ d) $x \geq 22$	4) Which statement describes "a number less than or equal to 43 "? a) $x<43$ b) $x>43$ c) $x \leq 43$ d) $x \geq 43$
5) Which statement describes " a number no more than 17"? a) $x<17$ b) $x>17$ c) $x \leq 17$ d) $x \geq 17$	6) Which statement describes "at least 32"? a) $x<32$ b) $x>32$ c) $x \leq 32$ d) $x \geq 32$
7) Which number is a solution to $x+4>12$ a) 3 b) 5 c) 7 d) 9	8) Which number is NOT a solution to $\quad x-3<10$ a) 7 b) 8 c) 10 d) 14
9) Which number is a solution to $\quad 3 x>12$ a) 4 b) 5 c) 2 d) 3	10) Which number is NOT a solution to $2 x \leq 10$ a) 3 b) 4 c) 5 d) 6
11) Which inequality matches the graph below? a) $n>1$ b) $n \leq 1$ c) $n \geq 1$ d) $n \geq-1$	12) Which inequality matches the graph below? a) $v>-3$ b) $v>3$ c) $v \leq-3$ d) $v<3$

13) Which inequality matches the graph below? a) $x>3$ b) $x<3$ c) $x \leq 3$ d). $x \geq 3$	14) Which inequality matches the graph below? $-7-6-5-4-3-2-10012 \begin{array}{lllllll} 4 & 4 & 5 & 6 \end{array}$ a) $n<0$ b) $n \leq 0$ c) $n \geq 0$ d) $n>0$
15) Solve $x+11>19$	16) Graph the solution to the inequality from question \#15.
17) Solve $x-3 \leq 5$	18) Graph the solution to the inequality from question \#17.
19) Solve $3 x<12$	20) Graph the solution to the inequality from question \#19.
21) Solve $\frac{x}{4} \geq 2$	22) Graph the solution to the inequality from question \#21.
23. Write an inequality for this statement " x is less than or equal to 7 ".	24. Write an inequality for this statement " x is greater than -9"

