Adv Math 6

 Unit 1
Number System Fluency

Greatest Common Factor (GCF)

Least Common Multiple (LCM)
Long Division
Operations with Decimals
Dividing Fractions

Name: \qquad
Math Teacher: \qquad
\qquad

Unit 1 Calendar

7/29	7/30	7/31	8/1	8/2
			Rules and Procedure Getting to Know You!	Rules and Procedure Getting to Know You!
8/5	8/6	8/7	8/8	8/9
Fraction Review: Simplifying Fractions	UNIT 1 PreTest MSG Set Up and expectations	Vocabulary Factors/ Multiples/GCF	LCM	Quiz
IXL Skills Week of 8/5: C.1, E.4, E. 7				
8/12	8/13	8/14	8/15	8/16
MI in the Lab	MI in the Lab	GCF/LCM Word Problems	$\begin{gathered} \text { Quiz } \\ \text { (GCF/LCM) } \end{gathered}$	Long Division
IXL Skills Week of 8/12: E.9, E.11, E. 12				
8/19	8/20	8/21	8/22	8/23
Long Division	Dividing Decimals	Add/Subtract Decimals	Multiplying Decimals	Quiz
IXL Skills Week of 8/19: C.5, C.3, G. 1				
8/26	8/27	8/28	8/29	8/30
Menu Performance Task	Mixed Decimal Operations	Dividing Fractions	Dividing Fractions with Word Problems	Review
IXL Skills Week of 8/26: H.7, O.4, O.5				
9/2	9/3	9/4	9/5	9/6
Labor Day	Review	Touchstones/ Review	Mini Post Test \& Review	Unit 1 Test
IXL Skills Week of 9/2: I.5, I.9, L.2, L.5, L. 7				

Unit 1: Number System Fluency

Standards, Checklist and Concept Map

Georgia Standards of Excellence (GSE):

MGSE6.NS.2: Fluently divide multi-digit numbers using the standard algorithm.
MGSE6.NS.3: Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

MGSE6.NS.1: Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=$ ad/bc.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

MGSE6.NS. 4 : Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express the sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.

What Will I Need to Learn??

\qquad I can divide numbers using the standard algorithm
I can interpret \& solve division word problems
I can add and subtract decimals
I can multiply decimals
\qquad I can divide decimals
\qquad I can divide fractions using an algorithm
\qquad I can use pictures to represent division of fractions
I can find the GCF of 2 numbers ≤ 100
I can find the LCM of 2 numbers ≤ 12
I can solve real-world problems involving the number system

Unit 1 Circle Map

Create a Circle Map of important vocab and topics from the standards listed above.

Unit 1 IXL Tracking Log

	Required Skills	
	Skill	Your Score
	C. 1 (Divisibility Rules)	
	E. 4 (Identify Factors)	
	E. 7 (Greatest Common Factor - GCF)	
	E. 9 (Least Common Multipl - LCM)	
	E. 11 (GCF \& LCM Word Problems)	
	E. 12 (Sort Factors of Numerical Expressions)	
	C. 5 (Dividing Whole Numbers with 2-Digit Divisors)	
	C. 3 (Divide Numbers Ending in Zero - Word Problems)	
	H. 7 (Division with Decimal Quotients)	
	G. 1 (Adding and Subtracting Decimals)	
	O.4 (Add, Subtract, Multiply or Divide Two Decimals)	
	O.5 (Add, Subtract, Multiply or Divide Two Decimals - Word Problems)	
	1.5 (Write Fractions in Lowest Terms)	
	1.9 (Convert Between Improper Fractions and Mixed Numbers)	
	L. 2 (Reciprocals)	
	L. 5 (Divide Fractions)	
	L. 7 (Divide Fractions and Mixed Numbers)	

Unit 1 - Vocabulary

Term	\quad Definition
Algorithm	A step-by-step method used to solve a problem
Difference	The result when two numbers are subtracted
Dividend	The number being divided
Divisibility	A number has divisibility when it can be divided evenly without a remainder
Divisor	A number that divides into the dividend
Factor	A whole number that divides exactly into another number
Greatest Common Factor (GCF)	The biggest number that will divide two or more numbers exactly
Least Common	The smallest number that is the multiple of two or more numbers
Multiple (LCM)	The product of a number and any whole number
Multiple	The value of a digit depending on its place in a number
Place value	A number that has exactly two factors, one and itself
Reciprocal	The result when two quantities are multiplied
Srime number	The number that results from dividing one number by another
Sume of two numbers whose product is 1; the	
result of "flipping" a fraction	

Unit 1 - Vocabulary - You Try

Term	Definition/Illustration/Example
Algorithm	
Difference	
Dividend	
Divisibility	
Divisor	
Factor	
Greatest Common Factor (GCF)	
Least Common Multiple (LCM)	
Multiple	
Place value	
Prime number	
Product	
Quotient	
Reciprocal	
Simplify	
Remainder	
Sum	

Unit 1 Pt. 1 Review: GCF/LCM and Long Division

Complete the following problems to review this unit. You must show all work to receive credit!

1) Find the greatest common factor of 30 and 48.
2) Find the least common multiple of 10 and 6 .
3) Which choice lists all the factors of 48?
a. $1,2,4,12,24,48$
b. $1,2,3,4,6,8,12,16,24,48$
c. $0,1,2,4,6,8,12,16,48$
d. $1,2,3,4,6,10,12,15,18,24,48$
4) Is it possible to have a Greatest Common Multiple? Yes No

Explain your reasoning. \qquad
\qquad
5) Is it possible to have a Least Common Factor? Yes No Explain your reasoning. \qquad

For \#s 6 \& 7, find the quotient, and write your remainders as a fraction AND a decimal.
6) $2 \longdiv { 5 3 7 }$

7) $1 5 \longdiv { 6 , 1 3 8 }$
Fraction:
11) There are 1,460 people waiting to ride a roller coaster. Each cart takes 30 people. How many carts will it take for everyone in line to have a turn?

Unit 1 Pt. 2 Review: Decimals and Fraction Division

Complete the following problems to review this unit.

You must show all work to receive credit!

1) $\frac{3}{5} \div \frac{1}{5}=$
2) $13.12+6+7.1=$
3) $(1.25)(2.3)=$
4) $\frac{5}{10} \div 10=$
5) $72-1.68=$
6) $5 \frac{1}{2} \div 2 \frac{1}{2}=$
7) A quarterback practiced for $28 \frac{1}{2}$ hours in 4 weeks. How many hours did he practice per week?
8) Sarah paid $\$ 4.80$ for 1.2 pounds of sunflower seeds. What is the cost for one pound of sunflower seeds?
9) A group of friends has ordered 3 pizzas to share. If each person ate $1 / 4$ of a pizza, and there is no pizza left over, how many friends split the pizza?
10) Emma has $\$ 3$ to buy school supplies. She buys 3 folders that are $\$ 0.55$ each. She wants to spend the remaining money on pencils that are $\$ 0.05$ each. How many pencils can she purchase?
11) Ian bought a milkshake for $\$ 3.58$ and a burger for $\$ 5.17$. If he paid with a $\$ 10$ bill, how much change did he receive?
12) Cameron is cutting a roll of cookie dough into pieces that are $\frac{1}{3}$ inch thick. If the roll of cookie dough is $\frac{4}{6}$ inches long, which model best represents the situation? Write and solve the division problem next to the model.
a.

b.

Divisibility Rules

Divisibility rules help you determine if a number can be evenly divided into another number.

If the last digit of a number is even, then the number is divisible by 2 .

If the sum of all the digits in a number is divisible by 3 , then the number is divisible by 3 .

4
If the last two digits of a number are divisible by 4 , then the number is divisible by 4.

If the last digit of a number is 0 or 5 , then the number is divisible by 5 .

If a number is divisible by both 2 and 3 , then the number is divisible by 6.

If the last digit of a number is doubled and then subtracted from the rest of the number, and the answer is 0 or is divisible by 7 , then the number is divisible by 7 .

If the last three digits of a number are divisible by 8, then the number is divisible by 8.

9
If the sum of all the digits in a number is divisible by 9 , then the number is divisible by 9 .

10
If the last digit of a number is 0 , then the number is divisible by 10 .

Divisibility Rules Practice

For each number below, test the divisibility rules for 2, 3, 4, $5,6,9$, and 10 and circle which numbers they are divisible by. Some numbers are divisible by several numbers but some may not be divisible by any. Use your notes!

1) 42: $2 \begin{array}{lllllll}10 & 3 & 4 & 5 & 6 & 9 & 10\end{array}$
2) 64: 2 | | 2 | 3 | 4 | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
3) 540: $2 \begin{array}{llllllll} & 2 & 3 & 4 & 5 & 6 & 9 & 10\end{array}$
4) 100: $2 \begin{array}{llllllll} & 2 & 3 & 4 & 5 & 6 & 9 & 10\end{array}$
5) 139: $2 \begin{array}{lllllll} & 3 & 4 & 5 & 6 & 9 & 10\end{array}$
6) 612: $2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 9 \quad 10$
7) 30: 20 | | 2 | 3 | 4 | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
8) 124: 2 | | 2 | 3 | 4 | 5 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
9) 126: $24 \quad 3 \quad 4 \quad 5 \quad 6 \quad 9 \quad 10$
10) 4428: $2 \begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & 9 & 10\end{array}$
11) 513: $2 \quad 3 \quad 3 \quad 4 \quad 5 \quad 6 \quad 9 \quad 10$
12) 330: $2 \begin{array}{lllllll} & 3 & 4 & 5 & 6 & 9 & 10\end{array}$

Factors and Products

Factors are whole numbers that multiply together to make a product.

Products are answers you get when you multiply factors.

Example:

Find the factors of 24.
Use a factor rainbow.

Use à factor table.

24	
1	24
2	12
3	8
4	6

The factors of 24 are: $1,2,3,4,6,8,12$ and 24

You Try:

Find all of the factors of the following numbers.

1) 18
2) 60
3) 45
4) 120
5) 19
6) 39

Multiples

Multiples are the product of a number and any whole number.
Example: Find the first 10 multiples of the number 2.
$2: 2,4,6,8,10,12,14,16,18,20$
2: $2,4,6,8,10,12,14,16,18,20$
You Try:
Find the first 6 multiples of the following numbers.

1) 7
2) 8
3) 5
4) 12
5) 20
6) 31

Extra Practice with Factors and Multiples

Find all of the factors of each number and the first 6 multiples.

1) 11

Factors: \qquad
Multiples: \qquad
2) 48

Factors: \qquad
Multiples: \qquad

GCF (Greatest Common Factor)

Definition: \qquad
\qquad

Method \#1: \qquad

Algorithm:

Method \#2:

\qquad

Algorithm:

GCF Examples

There are two ways to find the GCF (Greatest Common Factor). You can simply list the factors, or you can use the SLED method.

Example:

Find the GCF by making a list of all of the factors.
24: 1, 2, 3, 4,(6) $8,12,24$
30: $1,2,3,5,6$ ($10,15,30$
The largest factor that 24 and 30 share in common is 6 , so 6 is the GCF.

Find the GCF by using the SLED method.
First, set up a sled with the numbers on it. Divide by the common factors that the numbers share. Keep
dividing until the only common factor that remains is 1 .

2	24	30
3	12	15
	4	5

The GCF is the product of the factors on the left, so the GCF is 2×3 which is 6 . "GCF is on the LEFT!"

You Try:

Find the GCF for the following sets of numbers.

1) 16 and 72
2) 90 and 75
3) 54 and 18

LCM (Least Common Multiple)

Definition:

\qquad
\qquad

Method \#1: \qquad

Algorithm:

Method \#2:

\qquad

Algorithm:

LCM Examples

There are two ways to find the LCM (Least Common Multiple). You can simply list multiples of each number until you find one they have in common or you can use the SLED method.

Example:

Find the LCM by making a list of the multiples.
10: 10, 20, 30, 40, 50, 60 70, 80
12: 12, 24, 36, 48, 60
The smallest multiple that 10 and 24 have in common is 60 , so 60 is the LCM.

Find the LCM by using the SLED method.

The LCM is the product of all of the factors, so the LCM is $2 \times 5 \times 6$ which is 60 . "LCM is all of them!" Notice that the factors form the letter "L" for LCM.

You Try:

Find the LCM for the following sets of numbers.

1) 8 and 6
2) 12 and 20
3) 25 and 100

GCF and LCM

Find the GCF and LCM for each set of numbers.

TIP \#2 - Draw a picture! Sometimes visualizing the problem will help it to make more sense!

Example 1:

Johnny is making goodie bags that include a lollipop and bubbles. If the lollipops come 4 to a pack, and the bubbles come 6 to a pack, what is the smallest number of bags that he can make and not have anything left over? How many packs of lollipops and bubbles should he buy?

Draw 4 lollipops and 6 bubbles until there are no items "left over", until all of the lollipops have a matching bottle of bubbles.

The smallest number of bags w/o leftovers $=12$. He needs 3 packs of lollipops and 2 packs of bubbles.

Example 2:

Shannon is making identical balloon arrangements for a party. She has 24 white balloons and 16 blue balloons. She wants each arrangement to have the same number of each color. What is the greatest number of arrangements that she can make if every balloon is used?

| WWWBB | WWWBB | WWWBB | WWWBB |
| :--- | :--- | :--- | :--- | | Draw the balloons in the |
| :--- |
| largest possible number |

The \%wors is "greatest", so you're finding GCF.
She can make 8 balloon arrangements.

You Try:

1) There are 40 girls and 32 boys who want to participate in $6^{\text {th }}$ grade intramurals. If each team must have the same number of girls and the same number of boys, what is the greatest number of teams that can participate in intramurals? How many girls and boys will be on each team?
\# of teams \qquad
\# of girls \qquad
\# of boys \qquad
2) Fred is making some hot dogs for his company picnic. Buns come 12 to a pack and hot dogs come 8 to a pack. What is the fewest number of hot dogs he can make and not have any leftover buns or hot dogs? How many packs of buns and packs of hot dogs should he buy?
\# of hot dogs with buns that can be made \qquad
\# of packs of buns \qquad
\# of packs of hot dogs \qquad
3) At the Regal Cinemas grand opening, every $8^{\text {th }}$ customer will receive a free drink and every $10^{\text {th }}$ person will receive a free movie rental. What number customer will be the first to receive both gifts? \# of customer to receive both gifts \qquad -
4) Stephen is making a garden of 36 tomato plants and 45 corn plants. He wants to spread the plants out on as many rows as possible, so that each row has the same number of tomato plants and the same number of corn plants. What is the maximum number of rows that Stephen can plant? How many tomato plants will be on each row? How many corn plants will be on each row?
\# of plants per row \qquad
\# of tomato plants per row \qquad
\# of corn plants per row \qquad
5) Dayvon had a collection of baseball cards that he wants to divide evenly into his albums. He has 36 Braves cards and 48 Cubs cards. What is the greatest number of albums he can use? How many Braves cards and Cubs cards will be in each album?
\# of albums \qquad
\# of Braves cards per album \qquad -
\# of Cubs cards per album \qquad
6) Two pigs entered a race around a track. Piggly takes 6 minutes to run one lap. Wiggly takes 5 minutes to run one lap. If both pigs begin the race at the same time, what is the shortest number of minutes it will take for them to be back at the starting line? How many laps will each pig have made at that time?
Time for both pigs to be at starting line \qquad
\# of laps for Piggly \qquad
\# of laps for Wiggly \qquad
7) Enzo and Beatriz are playing games at their local arcade. Incredibly, Enzo wins 5 tickets from every game, and Beatriz wins 11 tickets from every game. When they stopped playing games, Enzo and Beatriz had won the same number of total tickets. How many tickets did each student win? How many games did Enzo and Beatriz each play?
\# of tickets each student each won \qquad
\# games that Enzo played \qquad
\# games that Beatriz played \qquad
8) Tim has 39 pairs of headphones and 13 music players. Tim wants to sell all of the headphones and music players in identical packages. What is the greatest number of packages Tim can make? How many headphones and music players will be in each package?
\# packages Tim can make \qquad
\# headphones per package \qquad
\# music players per package \qquad
9) Audra has two rolls of streamers to use in decorating the school gym for a pep rally. The red streamers are 64 yards long and the blue streamers are 72 yards long. What is the maximum length each streamer can be so that they are all of equal length? How many red streamers would she have? How many blue streamers would she have?

Length of each streamer \qquad
\# of red streamers \qquad
\# of blue streamers \qquad

Long Division

The purpose of division is to determine how many times the divisor fits into the dividend.

Division is the inverse (opposite operation) of multiplication. You can use multiplication to "undo" or check your answer. Multiply the quotient by the divisor and you should get the dividend.

Example:

Divide:	$3 \longdiv { 2 \leftarrow }$	3 goes into 7 - 2 times... with some extra!
Multiply:	$\begin{aligned} & \sqrt{2} \\ & 3 \longdiv { 7 5 } \\ & 6 \longleftarrow \end{aligned}$	$2 \times 3=6$
Subtract:	$\begin{aligned} & 3 \longdiv { 2 } \\ & 3 \longdiv { - 6 } \\ & \frac{-1}{1} \end{aligned}$	
Bring Down:	$\begin{array}{r} 2 \\ 3 \longdiv { 7 5 } \\ -\frac{6 \downarrow}{15} \end{array}$	
Repeat:	$\begin{gathered} 25 \\ 3 \longdiv { 7 5 } \\ -\frac{6}{15} \\ \frac{-15}{0} \end{gathered}$	$\begin{gathered} 15 \div 3=5 \\ 5 \times 3=15 \end{gathered}$

You Try:

Long Division and Remainders

What is a remainder? A \qquad exists when your \qquad doesn't go into your \qquad evenly, meaning that you don't have enough remaining to make another group. It is the
\qquad " amount after you have divided.

Example:

1) $23 \div 4=$

4 goes into 23 five whole times, but there are three more left. Those three won't allow us to make another group of 4 , so 3 is the remainder.

How do we write remainders? Up until this point, you have probably been writing remainders as "R 3 ". Now that you know more about what a remainder is, you will need to write your remainders differently to reflect that a remainder represents a PART of the whole.

We can write a remainder in one of two ways: a FRACTION or a DECIMAL.

Examples:

Problem	$\frac{\text { Instead of }}{\frac{\text { writing the }}{\text { quotient as... }}}$	$\frac{\text { Quotient as a }}{\text { Fraction }}$	$\frac{\text { Quotient as a }}{\text { Decimal }}$
$13 \div 5$	$2 R 3$	$2 \frac{3}{5}$	2.6
$93 \div 2$	46 R 1	$46 \frac{1}{2}$	46.5

Remainders as Fractions

Divide: $139 \div 6$
Note: When you divide, the divisor (6) goes into the dividend (139), 23 whole times, but there is 1 left over that won't make another group of 6.1 is the remainder. We write it as a fraction with the remainder $023 \frac{1}{6}$
$\frac{139}{-0}$
$\frac{-12}{19}$
$\frac{-18}{(1)}$ over the divisor. "There is one left when we needed six to make another whole."

You Try:

Find the quotient and write the remainder as a fraction.

1) $154 \div 4=$
2) $121 \div 8=$
3) $2856 \div 30=$
4) $222 \div 15=$
5) $215 \div 20=$
6) $45 \div 8=$

Remainders as Decimals

When you want to write your remainder as a decimal, you add a zero and continue to divide until you get a remainder of zero or you round your answer according to your instructions. If there is no decimal, you must add a decimal before you add a zero.

You Try:

Find the quotient and write the remainder as a decimal.

1) $5 \longdiv { 9 6 5 }$
2) $1 0 \longdiv { 1 8 7 }$

You Try:
 YouTry:

4) $45 \div 8=$
5) $215 \div 20=$
6) $\frac{7694}{3}=$
7) $1 5 \longdiv { 3 0 4 6 5 }$
(
8) $708 \div 15=$
9) $123 \div 12=$

-

5) $2856 \div 30=$
6) $222 \div 15=$
7) $154 \div 4=$
8) $121 \div 8=$
)
)

Long Division Additional Practice

Find the quotient.

1) $308 \div 22=$
2) $286 \div 11=$
3) $1064 \div 38=$
4) $1296 \div 18=$
5) $130 \div 20=$
6) $894 \div 8=$
7) $5009 \div 10=$
8) $894 \div 9=$

Long Division Error Analysis
Sally is a silly little girl who makes mistakes! In Column \#1, analyze her work and circle her mistake. In Column \#2, explain what she did wrong. In Column \#3, show how Silly Sally should work out the problem correctly. Show ALL work!

Silly Sally's Work (Circle her mistake):	What did Silly Sally do wrong?	Show Silly Sally how it's done! (Show ALL steps!)
$\begin{array}{r} \begin{array}{r} 212 \\ \hline 384 \\ -24 \downarrow \\ 144 \\ \frac{-144}{000} \end{array} \end{array}$		
$\begin{array}{r} 3 1 \longdiv { 8 7 8 } \\ \frac{-62 \downarrow}{258} \\ \frac{-248}{10} \end{array}$		

Making Sense of Division Problems

You know that a divisor won't always go into a dividend evenly; and when that happens, you're left with a \qquad That "remaining" amount represents a part of the whole. But what exactly does this mean?
Sometimes, for your solution to make sense, you cannot include the remainder. In these cases, you must round your quotient up or down to the nearest whole number.

Examples:

Mickey is making bows for Minnie. Each bow needs 7 in of ribbon. If he has 15 in of ribbon, how many bows can he make?	Goofy's favorite ride holds 7 kids at a time. If 15 kids are in line, how many times will the ride have to go for everyone in line to have a turn?
a) Divide:	a) Divide:
b) Draw a picture:	b) Draw a picture:
c) What does the remainder represent?	c) What does the remainder represent?
d) Will you have to round your final answer up or down? (Will your remainder be included in your final answer?) Explain.	d) Will you have to round your final answer up or down? (Will your remainder be included in your final answer?) Explain.
e) How many bows can Mickey make?	e) How many times does the ride have to go for everyone to have a turn?

Interpreting Remainders

Round UP when the remainder must be included in the solution.
Round DOWN when the solution must include whole pieces, and it does not make sense to include the remainder.

Would you round up or down? Circle UP or DOWN for each scenario.
UP DOWN How many buses are needed to transport students?
UP DOWN How many times can I listen to my favorite song (start to finish) in 1 hour?
UP DOWN How many packs of gum can I buy with $\$ 5$?
UP DOWN How many shelves are needed to hold a class set of workbooks?
Solve each problem. Circle A, B, C, or D to indicate the best way to interpret each remainder. Each choice will be used once.

A Round down to the whole number.	B Round up to the next whole number.
C Use a mixed number.	D Use a decimal.

1) Ariana charges an hourly rate for babysitting. Last month, she made $\$ 81$ for 12 hours of babysitting. How much does she make per hour?

Circle one: A B C D
Solution: \qquad
2) A group of 427 people are going on a field trip. Each bus can hold 40 people. How many buses are needed to take everyone on the trip?
Circle one: A B C D
Solution: \qquad
3) Kevin and his sisters picked 105 pounds of grapes to sell at a local farmer's market. They split the grapes evenly into 30 bags. How many pounds of grapes were in each bag?
Circle one: A B C D
Solution: \qquad
4) Mr. Hernandez owns a Game Stop. Each PS2 game takes up a width of 25 mm . If one shelf is 860 mm wide, how many games can Mr . Hernandez fit on the shelf?
Circle one: A B C D
Solution: \qquad

You Try:

1) HOMEWORK Lisa solved 448 math problems for homework over 28 days. If she solved the same number of problems each day, how many problems did she solve per day?
2) AT HOME Meg has a new bookcase for her bedroom with 6 shelves. Each shelf holds 8 books. If Meg has 50 books, how many books will not fit on the bookcase?
3) MEALS Sandra helped serve meals to 25 families. Each family received the same amount of food. If she served 275 pounds of food, how many pounds of food did each family receive?
4) BATTERIES A teacher bought a package of 17 batteries to put in her calculators. Each calculator uses 3 batteries. How many calculators can the teacher fill with batteries?
5) FOOTBALL The football team is raising money to have a new turf field installed. The cost of the turf field is $\$ 48,780$. The team has 18 months to raise the money. How much do they need to raise each month?
6) WINDOWS A window washing company has a contract to wash 3,082 windows on a 23 -story building. If there are the same number of windows on each floor, how many windows are there on each floor?
7) $\mathbf{S C H O O L}$ There are 32 students in a math class. Each table in the classroom seats 6 students. How many tables will be needed to seat all of the students?
8) DELIVERIES Mr. Thomas is delivering bricks to a construction site. His truck holds 387 bricks at one time. The builder has ordered 2,800 bricks. How many trips will Mr. Thomas have to make to deliver all the bricks?

Place Value Review

Place Value Table									
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { ¿ } \end{aligned}$		$\stackrel{\mathscr{\varrho}}{\oplus}$	$\begin{aligned} & \check{\varrho} \\ & \check{0} \end{aligned}$						
			3	-	4	5			

When reading a decimal you say "and" in place of the decimal and you use the name of the column of the last digit when reading a decimal. For example, 3.45 is read as three and fortyfive hundredths.

You Try:

Write the following numbers:

1) six and eight tenths \qquad
2) forty-two and sixty-one thousandths \qquad
3) seventy and twelve hundredths \qquad
4) five ten-thousandths \qquad
5) one thousand fifty-two and thirty one hundredths \qquad Write the following numbers in words:
6) 12.345 \qquad
7) 0.983 \qquad
8) 9.36 \qquad
9) 158.9 \qquad
10) 6.4

Dividing Decimals

Dividing decimals is just like dividing any other number, but you have to make sure the decimal ends up in the right place in your answer.

Here are the basic steps for dividing decimals:

1) If necessary, make the divisor a \qquad by moving the \qquad all the way to the right.
2) Move the \qquad in the dividend (the number under the "house") the same number of places that you moved it in the divisor. Add \qquad if necessary.
3) Bring the \qquad straight up. (Remember, in division the decimal is very \qquad and it floats.)
4) Finish by simply, \qquad as you normally would.

Examples:

1) $5 \longdiv { 2 . 5 }$
2) $1 . 2 5 \longdiv { 3 . 8 7 5 }$

You Try:

1) $2.32 \div 8=$
2) $0.045 \div 0.09=$
3) $16.75 \div 2.5=$
4) Aleem has $\$ 416.13$ that he is going to give to his 3 friends Amanda, Jennifer and Audra. If he is giving each friend the same amount, how much will each person get?
5) How many quarters are in $\$ 20$?

Adding and Subtracting Decimals

Here are the basic steps for adding and subtracting decimals.

1) Always \qquad up the \qquad
2) Fill in \qquad as placeholders at the end, especially if subtracting.
3) \qquad or \qquad .
4) \qquad the \qquad down.
5) \qquad your work! Check whether your answer is reasonable by estimating.

Example:

1) $2.6+3.45=$
2) $2.37-1.256=$

You Try:

1) $16.75+5.091=$
2) $312.55-16.2=$
3) $29.1-0.68=$
4) Savannah spent $\$ 11.50$ at the movies, and Quianna spent $\$ 12.75$. If they paid together, using a $\$ 50$ bill, how much change did they receive?

Multiplying Decimals

Here are the basic steps for multiplying decimals.

1) \qquad . (You do NOT need to line up the
\qquad
2) Count the number of places behind the
\qquad in your problem. Your product must have the same number of places behind the
\qquad _.

Example:

1) $3.67 \times 2.3=$
2) $9 \cdot 0.54=$

You Try:

1) $8.41 \times 0.5=$
2) $2.13(3.5)=$
3) $0.7 \cdot 0.8=$
4) Hunter is building a ramp for his Tech Decks. The base will be a piece of wood that is 2.75 feet long and 2 feet wide. What is the area of the base? (Area of a rectangle = length x width.)

Operations with Decimals Practice

Answer bank:			
54.2241	107.133	16.760	38.7
31.011	88.56	29.927	45.168
0.35	51.6	43.608	0.109

1) $92-53.3=$ \qquad 2) $60.4+28.16=$ \qquad
2) $19+88.133=$ \qquad 4) $5.45 \div 50=$ \qquad
3) $78.38-34.772=$ \qquad 6) $8.256 \div 0.16=$ \qquad
4) $9.41 \cdot 4.8=$ \qquad 8) $20.65 \div 59=$ \qquad
5) $96.927-67=$ \qquad 10) $9.513 \cdot 5.7=$ \qquad
6) $14.302+16.709=$ \qquad 12) $2 \cdot 8.38=$ \qquad

Fractions Cheat Sheet
$\left.\left.\begin{array}{|c|c|}\hline \text { A fraction is part of a } \\ \text { whole. }\end{array} \begin{array}{c}\text { The top number of a } \\ \text { fraction is called the } \\ \text { numerator. The bottom }\end{array}\right] \begin{array}{l}\text { number is the } \\ \text { denominator. }\end{array}\right]$

Mixed Numbers to Improper Fractions

Converting mixed numbers to improper fractions:

Example:

Convert $5 \frac{1}{6}$ to an improper fraction.
First, shade $5 \frac{1}{6}$ on the circles below:

Note that there are 31 pieces shaded. 5 wholes times the six pieces in each whole plus the one extra piece equals 31 . That is the new numerator. You still need 6 pieces to make a whole, so the denominator remains 6 .

So, $5 \frac{1}{6}=\frac{31}{6}$

You Try:

Convert the mixed numbers to improper fractions.

1) $3 \frac{1}{2}$
2) $2 \frac{1}{3}$
3) $5 \frac{2}{7}$

Improper Fractions to Mixed Numbers

Converting improper fractions to mixed numbers:

Example:

Convert $\frac{22}{5}$ to a mixed number.
First, shade in 22 pieces on the circles below:

Note that you should have filled 4 whole circles with 2 left over. That is because you need 5 pieces to make a whole and there are 4 complete groups of 5 in 22 with 2 left over.

So, $\frac{22}{5}=4 \frac{2}{5}$
You Try:
Convert the improper fractions to mixed numbers.
4) $\frac{17}{3}$
5) $\frac{40}{8}$
6) $\frac{48}{7}$

1) $\frac{20}{7}$
2) $\frac{33}{4}$
3) $\frac{13}{2}$
4) $1 \frac{3}{7}$
5) $22 \frac{2}{3}$
6) $12 \frac{1}{12}$

Simplifying Fractions

To \qquad fractions you need to find a common
\qquad that is shared between the numerator and the denominator. Then divide the numerator and the denominator by that common factor. You know you are done when your numerator and denominator only share a factor of \qquad —.

Example:

Simplify $\frac{4}{8}$

4
$\frac{4}{8}$

$\div \frac{2}{2}=\frac{2}{4}$
$\frac{2}{4}$

Review of Multiplying Fractions

Multiply Fractions

Words Multiply the numerators and multiply the denominators.
Models

Numbers $\quad \frac{2}{5} \times \frac{1}{2}=\frac{2 \times 1}{5 \times 2}$
Symbols $\quad \frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d}$, where b and d are not 0 .

Don't forget that if you simplify before you mutliply you won' \dagger have to simplify your answer and you will work with simpler numbers.

Example:

$$
\frac{7}{6} \times \frac{1}{9}=\frac{7}{18}
$$

You Try:

1) $\frac{1}{2} \cdot \frac{3}{5}=$
2) $\frac{1}{3} \cdot \frac{3}{4}=$
3) $\frac{2}{3} \cdot \frac{5}{6}=$
4) $\frac{12}{4} \cdot \frac{7}{3}=$
5) $1 \frac{1}{5} \cdot \frac{20}{3}=$
6) $\frac{5}{6} \cdot 2=$

Dividing Fractions Using Models

- Create a ecommon $\underset{\sim}{\boldsymbol{N}}$ denominator. ふ	N Draw a Q picture to 0 represent the first fraction or mixed number.	\boldsymbol{m} Circle groups Q of pieces. 0 The second fraction's numerator tells us how many pieces should be in each group.	- Your answer is Q how many © groups you $\boldsymbol{\omega}$ have circled.

Example:
Divide $\frac{3}{4} \div \frac{2}{8}=\frac{3}{4} \div \frac{1}{4}$

$$
\frac{3}{4} \div \frac{1}{4}=3
$$

You Try:

1) $\frac{2}{3} \div \frac{2}{6}=$

2) $\frac{8}{12} \div \frac{2}{3}=$

3) $1 \div$ \qquad $=$ \qquad
4) $\frac{3}{5} \div$ \qquad $=$

5) \qquad \div \qquad

6) \qquad \div \qquad $=$ \qquad

7) $__\ldots$

Dividing Fractions Using Common Denominators

Reciprocals

Example:

You Try:

1) $\frac{5}{7} \div \frac{1}{7}=$
2) $\frac{3}{8} \div \frac{1}{4}=$
3) $\frac{4}{6} \div \frac{1}{3}=$
4) $1 \frac{5}{9} \div \frac{7}{18}=$
5) $4 \frac{3}{8}$
6) 5
7) $7 \frac{5}{9}$

A \qquad is one of two numbers whose product is 1 . It is the result of "flipping" a fraction.

Example:

Find the reciprocal.
$\begin{array}{ll}\text { 1) } \frac{3}{4} \text { the reciprocal is } \frac{4}{3} & \text { 2) } 2 \text { the reciprocal is } \frac{1}{2}\end{array}$
3) $4 \frac{1}{5}=\frac{21}{5}$ the reciprocal is $\frac{5}{21}$

You Try:
Find the reciprocal

1) $\frac{2}{3}$
2) $\frac{3}{13}$
3) $\frac{9}{10}$
4) $10 \frac{3}{2} \div 6 \frac{1}{2}=$
5) $6 \div 3 \frac{1}{3}=$
6) $10 \frac{2}{19}$
7) $3 \frac{2}{3}=$

Dividing Fractions Using an Algorithm

K - Keep the first fraction (Make sure you change all mixed numbers to improper fractions first.)
C - Change the problem from division to multiplication.
F - Flip the second fraction (change it to its reciprocal)
Example:

K (Keep)	C (Change)	F (Flip)
$\frac{\mathbf{4}}{\mathbf{5}} \div \frac{2}{3}$	$\frac{4}{5} \div \frac{2}{3}=$	$\frac{4}{5} \cdot \frac{\mathbf{3}}{\mathbf{2}}=$

You Try:

1) $\frac{5}{8} \div \frac{2}{3}=$	2) $\frac{3}{10} \div \frac{1}{2}=$	3) $\frac{9}{10} \div \frac{1}{4}=$
4) $\frac{3}{8} \div 9=$	5) $\frac{10}{11} \div \frac{5}{6}=$	6) $\frac{5}{9} \div \frac{13}{9}=$
7) $1 \frac{3}{4} \div \frac{7}{8}=$	8) $3 \div 1 \frac{1}{8}=$	9) $3 \frac{2}{3} \div 2 \frac{2}{3}=$

Dividing Fractions Practice

Divide. Use any of the methods we have learned to find the quotient. Answer as a mixed number if possible.

1) $\frac{7}{2} \div \frac{10}{4}=$	2) $\frac{1}{3} \div \frac{1}{2}=$	3) $\frac{2}{4} \div \frac{1}{3}=$
4) $\frac{25}{3} \div \frac{14}{4}=$	5) $\frac{2}{4} \div \frac{1}{2}=$	6) $4 \frac{1}{2} \div 2 \frac{2}{3}=$
7) $7 \frac{2}{4} \div \frac{5}{8}=$	8) $4 \frac{1}{2} \div 3 \frac{2}{3}=$	9) $\frac{1}{3} \div \frac{27}{4}=$
10) $\frac{17}{5} \div \frac{13}{4}=$	11) $\frac{4}{5} \div 1 \frac{2}{3}=$	12) $\frac{18}{5} \div 4 \frac{1}{2}=$

